MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasleval Unicode version

Theorem imasleval 13693
Description: The value of the image structure's ordering when the order is compatible with the mapping function. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
imasless.u  |-  ( ph  ->  U  =  ( F 
"s  R ) )
imasless.v  |-  ( ph  ->  V  =  ( Base `  R ) )
imasless.f  |-  ( ph  ->  F : V -onto-> B
)
imasless.r  |-  ( ph  ->  R  e.  Z )
imasless.l  |-  .<_  =  ( le `  U )
imasleval.n  |-  N  =  ( le `  R
)
imasleval.e  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
c  e.  V  /\  d  e.  V )
)  ->  ( (
( F `  a
)  =  ( F `
 c )  /\  ( F `  b )  =  ( F `  d ) )  -> 
( a N b  <-> 
c N d ) ) )
Assertion
Ref Expression
imasleval  |-  ( (
ph  /\  X  e.  V  /\  Y  e.  V
)  ->  ( ( F `  X )  .<_  ( F `  Y
)  <->  X N Y ) )
Distinct variable groups:    c, d,  .<_   
a, b, c, d, F    N, a, b, c, d    V, a, b, c, d    Y, d    ph, a,
b, c, d    X, c, d
Allowed substitution hints:    B( a, b, c, d)    R( a, b, c, d)    U( a, b, c, d)    .<_ ( a, b)    X( a, b)    Y( a, b, c)    Z( a, b, c, d)

Proof of Theorem imasleval
StepHypRef Expression
1 fveq2 5668 . . . . . . 7  |-  ( c  =  X  ->  ( F `  c )  =  ( F `  X ) )
21breq1d 4163 . . . . . 6  |-  ( c  =  X  ->  (
( F `  c
)  .<_  ( F `  d )  <->  ( F `  X )  .<_  ( F `
 d ) ) )
3 breq1 4156 . . . . . 6  |-  ( c  =  X  ->  (
c N d  <->  X N
d ) )
42, 3bibi12d 313 . . . . 5  |-  ( c  =  X  ->  (
( ( F `  c )  .<_  ( F `
 d )  <->  c N
d )  <->  ( ( F `  X )  .<_  ( F `  d
)  <->  X N d ) ) )
54imbi2d 308 . . . 4  |-  ( c  =  X  ->  (
( ph  ->  ( ( F `  c ) 
.<_  ( F `  d
)  <->  c N d ) )  <->  ( ph  ->  ( ( F `  X )  .<_  ( F `
 d )  <->  X N
d ) ) ) )
6 fveq2 5668 . . . . . . 7  |-  ( d  =  Y  ->  ( F `  d )  =  ( F `  Y ) )
76breq2d 4165 . . . . . 6  |-  ( d  =  Y  ->  (
( F `  X
)  .<_  ( F `  d )  <->  ( F `  X )  .<_  ( F `
 Y ) ) )
8 breq2 4157 . . . . . 6  |-  ( d  =  Y  ->  ( X N d  <->  X N Y ) )
97, 8bibi12d 313 . . . . 5  |-  ( d  =  Y  ->  (
( ( F `  X )  .<_  ( F `
 d )  <->  X N
d )  <->  ( ( F `  X )  .<_  ( F `  Y
)  <->  X N Y ) ) )
109imbi2d 308 . . . 4  |-  ( d  =  Y  ->  (
( ph  ->  ( ( F `  X ) 
.<_  ( F `  d
)  <->  X N d ) )  <->  ( ph  ->  ( ( F `  X
)  .<_  ( F `  Y )  <->  X N Y ) ) ) )
11 imasless.f . . . . . . . . . . . 12  |-  ( ph  ->  F : V -onto-> B
)
12 fofn 5595 . . . . . . . . . . . 12  |-  ( F : V -onto-> B  ->  F  Fn  V )
1311, 12syl 16 . . . . . . . . . . 11  |-  ( ph  ->  F  Fn  V )
1413adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  ( c  e.  V  /\  d  e.  V ) )  ->  F  Fn  V )
15 fndm 5484 . . . . . . . . . 10  |-  ( F  Fn  V  ->  dom  F  =  V )
1614, 15syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( c  e.  V  /\  d  e.  V ) )  ->  dom  F  =  V )
1716rexeqdv 2854 . . . . . . . 8  |-  ( (
ph  /\  ( c  e.  V  /\  d  e.  V ) )  -> 
( E. a  e. 
dom  F ( a F ( F `  c )  /\  a
( F  o.  N
) ( F `  d ) )  <->  E. a  e.  V  ( a F ( F `  c )  /\  a
( F  o.  N
) ( F `  d ) ) ) )
18 fnbrfvb 5706 . . . . . . . . . . . 12  |-  ( ( F  Fn  V  /\  a  e.  V )  ->  ( ( F `  a )  =  ( F `  c )  <-> 
a F ( F `
 c ) ) )
1914, 18sylan 458 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
c  e.  V  /\  d  e.  V )
)  /\  a  e.  V )  ->  (
( F `  a
)  =  ( F `
 c )  <->  a F
( F `  c
) ) )
2019anbi1d 686 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
c  e.  V  /\  d  e.  V )
)  /\  a  e.  V )  ->  (
( ( F `  a )  =  ( F `  c )  /\  a ( F  o.  N ) ( F `  d ) )  <->  ( a F ( F `  c
)  /\  a ( F  o.  N )
( F `  d
) ) ) )
21 ancom 438 . . . . . . . . . . . . . . 15  |-  ( ( a N b  /\  b F ( F `  d ) )  <->  ( b F ( F `  d )  /\  a N b ) )
22 vex 2902 . . . . . . . . . . . . . . . . . 18  |-  b  e. 
_V
23 fvex 5682 . . . . . . . . . . . . . . . . . 18  |-  ( F `
 d )  e. 
_V
2422, 23breldm 5014 . . . . . . . . . . . . . . . . 17  |-  ( b F ( F `  d )  ->  b  e.  dom  F )
2524adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( b F ( F `
 d )  /\  a N b )  -> 
b  e.  dom  F
)
2625pm4.71ri 615 . . . . . . . . . . . . . . 15  |-  ( ( b F ( F `
 d )  /\  a N b )  <->  ( b  e.  dom  F  /\  (
b F ( F `
 d )  /\  a N b ) ) )
2721, 26bitri 241 . . . . . . . . . . . . . 14  |-  ( ( a N b  /\  b F ( F `  d ) )  <->  ( b  e.  dom  F  /\  (
b F ( F `
 d )  /\  a N b ) ) )
2827exbii 1589 . . . . . . . . . . . . 13  |-  ( E. b ( a N b  /\  b F ( F `  d
) )  <->  E. b
( b  e.  dom  F  /\  ( b F ( F `  d
)  /\  a N
b ) ) )
29 vex 2902 . . . . . . . . . . . . . 14  |-  a  e. 
_V
3029, 23brco 4983 . . . . . . . . . . . . 13  |-  ( a ( F  o.  N
) ( F `  d )  <->  E. b
( a N b  /\  b F ( F `  d ) ) )
31 df-rex 2655 . . . . . . . . . . . . 13  |-  ( E. b  e.  dom  F
( b F ( F `  d )  /\  a N b )  <->  E. b ( b  e.  dom  F  /\  ( b F ( F `  d )  /\  a N b ) ) )
3228, 30, 313bitr4i 269 . . . . . . . . . . . 12  |-  ( a ( F  o.  N
) ( F `  d )  <->  E. b  e.  dom  F ( b F ( F `  d )  /\  a N b ) )
3314ad2antrr 707 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( c  e.  V  /\  d  e.  V
) )  /\  a  e.  V )  /\  ( F `  a )  =  ( F `  c ) )  ->  F  Fn  V )
34 fnbrfvb 5706 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  Fn  V  /\  b  e.  V )  ->  ( ( F `  b )  =  ( F `  d )  <-> 
b F ( F `
 d ) ) )
3533, 34sylan 458 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  ( c  e.  V  /\  d  e.  V
) )  /\  a  e.  V )  /\  ( F `  a )  =  ( F `  c ) )  /\  b  e.  V )  ->  ( ( F `  b )  =  ( F `  d )  <-> 
b F ( F `
 d ) ) )
3635anbi1d 686 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  ( c  e.  V  /\  d  e.  V
) )  /\  a  e.  V )  /\  ( F `  a )  =  ( F `  c ) )  /\  b  e.  V )  ->  ( ( ( F `
 b )  =  ( F `  d
)  /\  a N
b )  <->  ( b F ( F `  d )  /\  a N b ) ) )
37 imasleval.e . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
c  e.  V  /\  d  e.  V )
)  ->  ( (
( F `  a
)  =  ( F `
 c )  /\  ( F `  b )  =  ( F `  d ) )  -> 
( a N b  <-> 
c N d ) ) )
38373expa 1153 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
a  e.  V  /\  b  e.  V )
)  /\  ( c  e.  V  /\  d  e.  V ) )  -> 
( ( ( F `
 a )  =  ( F `  c
)  /\  ( F `  b )  =  ( F `  d ) )  ->  ( a N b  <->  c N
d ) ) )
3938an32s 780 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
c  e.  V  /\  d  e.  V )
)  /\  ( a  e.  V  /\  b  e.  V ) )  -> 
( ( ( F `
 a )  =  ( F `  c
)  /\  ( F `  b )  =  ( F `  d ) )  ->  ( a N b  <->  c N
d ) ) )
4039anassrs 630 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( c  e.  V  /\  d  e.  V
) )  /\  a  e.  V )  /\  b  e.  V )  ->  (
( ( F `  a )  =  ( F `  c )  /\  ( F `  b )  =  ( F `  d ) )  ->  ( a N b  <->  c N
d ) ) )
4140impl 604 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( (
ph  /\  ( c  e.  V  /\  d  e.  V ) )  /\  a  e.  V )  /\  b  e.  V
)  /\  ( F `  a )  =  ( F `  c ) )  /\  ( F `
 b )  =  ( F `  d
) )  ->  (
a N b  <->  c N
d ) )
4241pm5.32da 623 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  ( c  e.  V  /\  d  e.  V
) )  /\  a  e.  V )  /\  b  e.  V )  /\  ( F `  a )  =  ( F `  c ) )  -> 
( ( ( F `
 b )  =  ( F `  d
)  /\  a N
b )  <->  ( ( F `  b )  =  ( F `  d )  /\  c N d ) ) )
4342an32s 780 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  ( c  e.  V  /\  d  e.  V
) )  /\  a  e.  V )  /\  ( F `  a )  =  ( F `  c ) )  /\  b  e.  V )  ->  ( ( ( F `
 b )  =  ( F `  d
)  /\  a N
b )  <->  ( ( F `  b )  =  ( F `  d )  /\  c N d ) ) )
4436, 43bitr3d 247 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( c  e.  V  /\  d  e.  V
) )  /\  a  e.  V )  /\  ( F `  a )  =  ( F `  c ) )  /\  b  e.  V )  ->  ( ( b F ( F `  d
)  /\  a N
b )  <->  ( ( F `  b )  =  ( F `  d )  /\  c N d ) ) )
4544rexbidva 2666 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( c  e.  V  /\  d  e.  V
) )  /\  a  e.  V )  /\  ( F `  a )  =  ( F `  c ) )  -> 
( E. b  e.  V  ( b F ( F `  d
)  /\  a N
b )  <->  E. b  e.  V  ( ( F `  b )  =  ( F `  d )  /\  c N d ) ) )
46 r19.41v 2804 . . . . . . . . . . . . . 14  |-  ( E. b  e.  V  ( ( F `  b
)  =  ( F `
 d )  /\  c N d )  <->  ( E. b  e.  V  ( F `  b )  =  ( F `  d )  /\  c N d ) )
4745, 46syl6bb 253 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( c  e.  V  /\  d  e.  V
) )  /\  a  e.  V )  /\  ( F `  a )  =  ( F `  c ) )  -> 
( E. b  e.  V  ( b F ( F `  d
)  /\  a N
b )  <->  ( E. b  e.  V  ( F `  b )  =  ( F `  d )  /\  c N d ) ) )
4816rexeqdv 2854 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( c  e.  V  /\  d  e.  V ) )  -> 
( E. b  e. 
dom  F ( b F ( F `  d )  /\  a N b )  <->  E. b  e.  V  ( b F ( F `  d )  /\  a N b ) ) )
4948ad2antrr 707 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( c  e.  V  /\  d  e.  V
) )  /\  a  e.  V )  /\  ( F `  a )  =  ( F `  c ) )  -> 
( E. b  e. 
dom  F ( b F ( F `  d )  /\  a N b )  <->  E. b  e.  V  ( b F ( F `  d )  /\  a N b ) ) )
50 simprr 734 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( c  e.  V  /\  d  e.  V ) )  -> 
d  e.  V )
51 eqid 2387 . . . . . . . . . . . . . . . 16  |-  ( F `
 d )  =  ( F `  d
)
52 fveq2 5668 . . . . . . . . . . . . . . . . . 18  |-  ( b  =  d  ->  ( F `  b )  =  ( F `  d ) )
5352eqeq1d 2395 . . . . . . . . . . . . . . . . 17  |-  ( b  =  d  ->  (
( F `  b
)  =  ( F `
 d )  <->  ( F `  d )  =  ( F `  d ) ) )
5453rspcev 2995 . . . . . . . . . . . . . . . 16  |-  ( ( d  e.  V  /\  ( F `  d )  =  ( F `  d ) )  ->  E. b  e.  V  ( F `  b )  =  ( F `  d ) )
5550, 51, 54sylancl 644 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( c  e.  V  /\  d  e.  V ) )  ->  E. b  e.  V  ( F `  b )  =  ( F `  d ) )
5655biantrurd 495 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( c  e.  V  /\  d  e.  V ) )  -> 
( c N d  <-> 
( E. b  e.  V  ( F `  b )  =  ( F `  d )  /\  c N d ) ) )
5756ad2antrr 707 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( c  e.  V  /\  d  e.  V
) )  /\  a  e.  V )  /\  ( F `  a )  =  ( F `  c ) )  -> 
( c N d  <-> 
( E. b  e.  V  ( F `  b )  =  ( F `  d )  /\  c N d ) ) )
5847, 49, 573bitr4d 277 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( c  e.  V  /\  d  e.  V
) )  /\  a  e.  V )  /\  ( F `  a )  =  ( F `  c ) )  -> 
( E. b  e. 
dom  F ( b F ( F `  d )  /\  a N b )  <->  c N
d ) )
5932, 58syl5bb 249 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( c  e.  V  /\  d  e.  V
) )  /\  a  e.  V )  /\  ( F `  a )  =  ( F `  c ) )  -> 
( a ( F  o.  N ) ( F `  d )  <-> 
c N d ) )
6059pm5.32da 623 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
c  e.  V  /\  d  e.  V )
)  /\  a  e.  V )  ->  (
( ( F `  a )  =  ( F `  c )  /\  a ( F  o.  N ) ( F `  d ) )  <->  ( ( F `
 a )  =  ( F `  c
)  /\  c N
d ) ) )
6120, 60bitr3d 247 . . . . . . . . 9  |-  ( ( ( ph  /\  (
c  e.  V  /\  d  e.  V )
)  /\  a  e.  V )  ->  (
( a F ( F `  c )  /\  a ( F  o.  N ) ( F `  d ) )  <->  ( ( F `
 a )  =  ( F `  c
)  /\  c N
d ) ) )
6261rexbidva 2666 . . . . . . . 8  |-  ( (
ph  /\  ( c  e.  V  /\  d  e.  V ) )  -> 
( E. a  e.  V  ( a F ( F `  c
)  /\  a ( F  o.  N )
( F `  d
) )  <->  E. a  e.  V  ( ( F `  a )  =  ( F `  c )  /\  c N d ) ) )
6317, 62bitrd 245 . . . . . . 7  |-  ( (
ph  /\  ( c  e.  V  /\  d  e.  V ) )  -> 
( E. a  e. 
dom  F ( a F ( F `  c )  /\  a
( F  o.  N
) ( F `  d ) )  <->  E. a  e.  V  ( ( F `  a )  =  ( F `  c )  /\  c N d ) ) )
64 fvex 5682 . . . . . . . . . . . 12  |-  ( F `
 c )  e. 
_V
6564, 29brcnv 4995 . . . . . . . . . . 11  |-  ( ( F `  c ) `' F a  <->  a F
( F `  c
) )
6665anbi1i 677 . . . . . . . . . 10  |-  ( ( ( F `  c
) `' F a  /\  a ( F  o.  N ) ( F `  d ) )  <->  ( a F ( F `  c
)  /\  a ( F  o.  N )
( F `  d
) ) )
6729, 64breldm 5014 . . . . . . . . . . . 12  |-  ( a F ( F `  c )  ->  a  e.  dom  F )
6867adantr 452 . . . . . . . . . . 11  |-  ( ( a F ( F `
 c )  /\  a ( F  o.  N ) ( F `
 d ) )  ->  a  e.  dom  F )
6968pm4.71ri 615 . . . . . . . . . 10  |-  ( ( a F ( F `
 c )  /\  a ( F  o.  N ) ( F `
 d ) )  <-> 
( a  e.  dom  F  /\  ( a F ( F `  c
)  /\  a ( F  o.  N )
( F `  d
) ) ) )
7066, 69bitri 241 . . . . . . . . 9  |-  ( ( ( F `  c
) `' F a  /\  a ( F  o.  N ) ( F `  d ) )  <->  ( a  e. 
dom  F  /\  (
a F ( F `
 c )  /\  a ( F  o.  N ) ( F `
 d ) ) ) )
7170exbii 1589 . . . . . . . 8  |-  ( E. a ( ( F `
 c ) `' F a  /\  a
( F  o.  N
) ( F `  d ) )  <->  E. a
( a  e.  dom  F  /\  ( a F ( F `  c
)  /\  a ( F  o.  N )
( F `  d
) ) ) )
7264, 23brco 4983 . . . . . . . 8  |-  ( ( F `  c ) ( ( F  o.  N )  o.  `' F ) ( F `
 d )  <->  E. a
( ( F `  c ) `' F
a  /\  a ( F  o.  N )
( F `  d
) ) )
73 df-rex 2655 . . . . . . . 8  |-  ( E. a  e.  dom  F
( a F ( F `  c )  /\  a ( F  o.  N ) ( F `  d ) )  <->  E. a ( a  e.  dom  F  /\  ( a F ( F `  c )  /\  a ( F  o.  N ) ( F `  d ) ) ) )
7471, 72, 733bitr4ri 270 . . . . . . 7  |-  ( E. a  e.  dom  F
( a F ( F `  c )  /\  a ( F  o.  N ) ( F `  d ) )  <->  ( F `  c ) ( ( F  o.  N )  o.  `' F ) ( F `  d
) )
75 r19.41v 2804 . . . . . . 7  |-  ( E. a  e.  V  ( ( F `  a
)  =  ( F `
 c )  /\  c N d )  <->  ( E. a  e.  V  ( F `  a )  =  ( F `  c )  /\  c N d ) )
7663, 74, 753bitr3g 279 . . . . . 6  |-  ( (
ph  /\  ( c  e.  V  /\  d  e.  V ) )  -> 
( ( F `  c ) ( ( F  o.  N )  o.  `' F ) ( F `  d
)  <->  ( E. a  e.  V  ( F `  a )  =  ( F `  c )  /\  c N d ) ) )
77 imasless.u . . . . . . . . 9  |-  ( ph  ->  U  =  ( F 
"s  R ) )
78 imasless.v . . . . . . . . 9  |-  ( ph  ->  V  =  ( Base `  R ) )
79 imasless.r . . . . . . . . 9  |-  ( ph  ->  R  e.  Z )
80 imasleval.n . . . . . . . . 9  |-  N  =  ( le `  R
)
81 imasless.l . . . . . . . . 9  |-  .<_  =  ( le `  U )
8277, 78, 11, 79, 80, 81imasle 13675 . . . . . . . 8  |-  ( ph  -> 
.<_  =  ( ( F  o.  N )  o.  `' F ) )
8382adantr 452 . . . . . . 7  |-  ( (
ph  /\  ( c  e.  V  /\  d  e.  V ) )  ->  .<_  =  ( ( F  o.  N )  o.  `' F ) )
8483breqd 4164 . . . . . 6  |-  ( (
ph  /\  ( c  e.  V  /\  d  e.  V ) )  -> 
( ( F `  c )  .<_  ( F `
 d )  <->  ( F `  c ) ( ( F  o.  N )  o.  `' F ) ( F `  d
) ) )
85 simprl 733 . . . . . . . 8  |-  ( (
ph  /\  ( c  e.  V  /\  d  e.  V ) )  -> 
c  e.  V )
86 eqid 2387 . . . . . . . 8  |-  ( F `
 c )  =  ( F `  c
)
87 fveq2 5668 . . . . . . . . . 10  |-  ( a  =  c  ->  ( F `  a )  =  ( F `  c ) )
8887eqeq1d 2395 . . . . . . . . 9  |-  ( a  =  c  ->  (
( F `  a
)  =  ( F `
 c )  <->  ( F `  c )  =  ( F `  c ) ) )
8988rspcev 2995 . . . . . . . 8  |-  ( ( c  e.  V  /\  ( F `  c )  =  ( F `  c ) )  ->  E. a  e.  V  ( F `  a )  =  ( F `  c ) )
9085, 86, 89sylancl 644 . . . . . . 7  |-  ( (
ph  /\  ( c  e.  V  /\  d  e.  V ) )  ->  E. a  e.  V  ( F `  a )  =  ( F `  c ) )
9190biantrurd 495 . . . . . 6  |-  ( (
ph  /\  ( c  e.  V  /\  d  e.  V ) )  -> 
( c N d  <-> 
( E. a  e.  V  ( F `  a )  =  ( F `  c )  /\  c N d ) ) )
9276, 84, 913bitr4d 277 . . . . 5  |-  ( (
ph  /\  ( c  e.  V  /\  d  e.  V ) )  -> 
( ( F `  c )  .<_  ( F `
 d )  <->  c N
d ) )
9392expcom 425 . . . 4  |-  ( ( c  e.  V  /\  d  e.  V )  ->  ( ph  ->  (
( F `  c
)  .<_  ( F `  d )  <->  c N
d ) ) )
945, 10, 93vtocl2ga 2962 . . 3  |-  ( ( X  e.  V  /\  Y  e.  V )  ->  ( ph  ->  (
( F `  X
)  .<_  ( F `  Y )  <->  X N Y ) ) )
9594com12 29 . 2  |-  ( ph  ->  ( ( X  e.  V  /\  Y  e.  V )  ->  (
( F `  X
)  .<_  ( F `  Y )  <->  X N Y ) ) )
96953impib 1151 1  |-  ( (
ph  /\  X  e.  V  /\  Y  e.  V
)  ->  ( ( F `  X )  .<_  ( F `  Y
)  <->  X N Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   E.wex 1547    = wceq 1649    e. wcel 1717   E.wrex 2650   class class class wbr 4153   `'ccnv 4817   dom cdm 4818    o. ccom 4822    Fn wfn 5389   -onto->wfo 5392   ` cfv 5394  (class class class)co 6020   Basecbs 13396   lecple 13463    "s cimas 13657
This theorem is referenced by:  xpsle  13733
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-oadd 6664  df-er 6841  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-sup 7381  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-nn 9933  df-2 9990  df-3 9991  df-4 9992  df-5 9993  df-6 9994  df-7 9995  df-8 9996  df-9 9997  df-10 9998  df-n0 10154  df-z 10215  df-dec 10315  df-uz 10421  df-fz 10976  df-struct 13398  df-ndx 13399  df-slot 13400  df-base 13401  df-plusg 13469  df-mulr 13470  df-sca 13472  df-vsca 13473  df-tset 13475  df-ple 13476  df-ds 13478  df-imas 13661
  Copyright terms: Public domain W3C validator