MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasmnd2 Unicode version

Theorem imasmnd2 14425
Description: The image structure of a monoid is a monoid. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
imasmnd.u  |-  ( ph  ->  U  =  ( F 
"s  R ) )
imasmnd.v  |-  ( ph  ->  V  =  ( Base `  R ) )
imasmnd.p  |-  .+  =  ( +g  `  R )
imasmnd.f  |-  ( ph  ->  F : V -onto-> B
)
imasmnd.e  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( (
( F `  a
)  =  ( F `
 p )  /\  ( F `  b )  =  ( F `  q ) )  -> 
( F `  (
a  .+  b )
)  =  ( F `
 ( p  .+  q ) ) ) )
imasmnd2.r  |-  ( ph  ->  R  e.  W )
imasmnd2.1  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  ( x  .+  y )  e.  V
)
imasmnd2.2  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( F `  (
( x  .+  y
)  .+  z )
)  =  ( F `
 ( x  .+  ( y  .+  z
) ) ) )
imasmnd2.3  |-  ( ph  ->  .0.  e.  V )
imasmnd2.4  |-  ( (
ph  /\  x  e.  V )  ->  ( F `  (  .0.  .+  x ) )  =  ( F `  x
) )
imasmnd2.5  |-  ( (
ph  /\  x  e.  V )  ->  ( F `  ( x  .+  .0.  ) )  =  ( F `  x
) )
Assertion
Ref Expression
imasmnd2  |-  ( ph  ->  ( U  e.  Mnd  /\  ( F `  .0.  )  =  ( 0g `  U ) ) )
Distinct variable groups:    q, p, x, y,  .+    a, b, p, q, x, y, z, ph    U, a, b, p, q, x, y, z    .0. , p, q, x    B, p, q    F, a, b, p, q, x, y, z    R, p, q    V, a, b, p, q, x, y, z
Allowed substitution hints:    B( x, y, z, a, b)    .+ ( z,
a, b)    R( x, y, z, a, b)    W( x, y, z, q, p, a, b)    .0. ( y,
z, a, b)

Proof of Theorem imasmnd2
Dummy variables  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasmnd.u . . . 4  |-  ( ph  ->  U  =  ( F 
"s  R ) )
2 imasmnd.v . . . 4  |-  ( ph  ->  V  =  ( Base `  R ) )
3 imasmnd.f . . . 4  |-  ( ph  ->  F : V -onto-> B
)
4 imasmnd2.r . . . 4  |-  ( ph  ->  R  e.  W )
51, 2, 3, 4imasbas 13431 . . 3  |-  ( ph  ->  B  =  ( Base `  U ) )
6 eqidd 2297 . . 3  |-  ( ph  ->  ( +g  `  U
)  =  ( +g  `  U ) )
7 imasmnd.e . . . . 5  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( (
( F `  a
)  =  ( F `
 p )  /\  ( F `  b )  =  ( F `  q ) )  -> 
( F `  (
a  .+  b )
)  =  ( F `
 ( p  .+  q ) ) ) )
8 imasmnd.p . . . . 5  |-  .+  =  ( +g  `  R )
9 eqid 2296 . . . . 5  |-  ( +g  `  U )  =  ( +g  `  U )
10 imasmnd2.1 . . . . . . 7  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  ( x  .+  y )  e.  V
)
11103expb 1152 . . . . . 6  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( x  .+  y
)  e.  V )
1211caovclg 6028 . . . . 5  |-  ( (
ph  /\  ( p  e.  V  /\  q  e.  V ) )  -> 
( p  .+  q
)  e.  V )
133, 7, 1, 2, 4, 8, 9, 12imasaddf 13451 . . . 4  |-  ( ph  ->  ( +g  `  U
) : ( B  X.  B ) --> B )
14 fovrn 6006 . . . 4  |-  ( ( ( +g  `  U
) : ( B  X.  B ) --> B  /\  u  e.  B  /\  v  e.  B
)  ->  ( u
( +g  `  U ) v )  e.  B
)
1513, 14syl3an1 1215 . . 3  |-  ( (
ph  /\  u  e.  B  /\  v  e.  B
)  ->  ( u
( +g  `  U ) v )  e.  B
)
16 forn 5470 . . . . . . . . . 10  |-  ( F : V -onto-> B  ->  ran  F  =  B )
173, 16syl 15 . . . . . . . . 9  |-  ( ph  ->  ran  F  =  B )
1817eleq2d 2363 . . . . . . . 8  |-  ( ph  ->  ( u  e.  ran  F  <-> 
u  e.  B ) )
1917eleq2d 2363 . . . . . . . 8  |-  ( ph  ->  ( v  e.  ran  F  <-> 
v  e.  B ) )
2017eleq2d 2363 . . . . . . . 8  |-  ( ph  ->  ( w  e.  ran  F  <-> 
w  e.  B ) )
2118, 19, 203anbi123d 1252 . . . . . . 7  |-  ( ph  ->  ( ( u  e. 
ran  F  /\  v  e.  ran  F  /\  w  e.  ran  F )  <->  ( u  e.  B  /\  v  e.  B  /\  w  e.  B ) ) )
22 fofn 5469 . . . . . . . . 9  |-  ( F : V -onto-> B  ->  F  Fn  V )
233, 22syl 15 . . . . . . . 8  |-  ( ph  ->  F  Fn  V )
24 fvelrnb 5586 . . . . . . . . 9  |-  ( F  Fn  V  ->  (
u  e.  ran  F  <->  E. x  e.  V  ( F `  x )  =  u ) )
25 fvelrnb 5586 . . . . . . . . 9  |-  ( F  Fn  V  ->  (
v  e.  ran  F  <->  E. y  e.  V  ( F `  y )  =  v ) )
26 fvelrnb 5586 . . . . . . . . 9  |-  ( F  Fn  V  ->  (
w  e.  ran  F  <->  E. z  e.  V  ( F `  z )  =  w ) )
2724, 25, 263anbi123d 1252 . . . . . . . 8  |-  ( F  Fn  V  ->  (
( u  e.  ran  F  /\  v  e.  ran  F  /\  w  e.  ran  F )  <->  ( E. x  e.  V  ( F `  x )  =  u  /\  E. y  e.  V  ( F `  y )  =  v  /\  E. z  e.  V  ( F `  z )  =  w ) ) )
2823, 27syl 15 . . . . . . 7  |-  ( ph  ->  ( ( u  e. 
ran  F  /\  v  e.  ran  F  /\  w  e.  ran  F )  <->  ( E. x  e.  V  ( F `  x )  =  u  /\  E. y  e.  V  ( F `  y )  =  v  /\  E. z  e.  V  ( F `  z )  =  w ) ) )
2921, 28bitr3d 246 . . . . . 6  |-  ( ph  ->  ( ( u  e.  B  /\  v  e.  B  /\  w  e.  B )  <->  ( E. x  e.  V  ( F `  x )  =  u  /\  E. y  e.  V  ( F `  y )  =  v  /\  E. z  e.  V  ( F `  z )  =  w ) ) )
30 3reeanv 2721 . . . . . 6  |-  ( E. x  e.  V  E. y  e.  V  E. z  e.  V  (
( F `  x
)  =  u  /\  ( F `  y )  =  v  /\  ( F `  z )  =  w )  <->  ( E. x  e.  V  ( F `  x )  =  u  /\  E. y  e.  V  ( F `  y )  =  v  /\  E. z  e.  V  ( F `  z )  =  w ) )
3129, 30syl6bbr 254 . . . . 5  |-  ( ph  ->  ( ( u  e.  B  /\  v  e.  B  /\  w  e.  B )  <->  E. x  e.  V  E. y  e.  V  E. z  e.  V  ( ( F `  x )  =  u  /\  ( F `  y )  =  v  /\  ( F `  z )  =  w ) ) )
32 imasmnd2.2 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( F `  (
( x  .+  y
)  .+  z )
)  =  ( F `
 ( x  .+  ( y  .+  z
) ) ) )
33 simpl 443 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  ->  ph )
34103adant3r3 1162 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( x  .+  y
)  e.  V )
35 simpr3 963 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
z  e.  V )
363, 7, 1, 2, 4, 8, 9imasaddval 13450 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  .+  y )  e.  V  /\  z  e.  V
)  ->  ( ( F `  ( x  .+  y ) ) ( +g  `  U ) ( F `  z
) )  =  ( F `  ( ( x  .+  y ) 
.+  z ) ) )
3733, 34, 35, 36syl3anc 1182 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( ( F `  ( x  .+  y ) ) ( +g  `  U
) ( F `  z ) )  =  ( F `  (
( x  .+  y
)  .+  z )
) )
38 simpr1 961 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  ->  x  e.  V )
3912caovclg 6028 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( y  e.  V  /\  z  e.  V ) )  -> 
( y  .+  z
)  e.  V )
40393adantr1 1114 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( y  .+  z
)  e.  V )
413, 7, 1, 2, 4, 8, 9imasaddval 13450 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  V  /\  ( y  .+  z )  e.  V
)  ->  ( ( F `  x )
( +g  `  U ) ( F `  (
y  .+  z )
) )  =  ( F `  ( x 
.+  ( y  .+  z ) ) ) )
4233, 38, 40, 41syl3anc 1182 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( ( F `  x ) ( +g  `  U ) ( F `
 ( y  .+  z ) ) )  =  ( F `  ( x  .+  ( y 
.+  z ) ) ) )
4332, 37, 423eqtr4d 2338 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( ( F `  ( x  .+  y ) ) ( +g  `  U
) ( F `  z ) )  =  ( ( F `  x ) ( +g  `  U ) ( F `
 ( y  .+  z ) ) ) )
443, 7, 1, 2, 4, 8, 9imasaddval 13450 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  ( ( F `  x )
( +g  `  U ) ( F `  y
) )  =  ( F `  ( x 
.+  y ) ) )
45443adant3r3 1162 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( ( F `  x ) ( +g  `  U ) ( F `
 y ) )  =  ( F `  ( x  .+  y ) ) )
4645oveq1d 5889 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( ( ( F `
 x ) ( +g  `  U ) ( F `  y
) ) ( +g  `  U ) ( F `
 z ) )  =  ( ( F `
 ( x  .+  y ) ) ( +g  `  U ) ( F `  z
) ) )
473, 7, 1, 2, 4, 8, 9imasaddval 13450 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  V  /\  z  e.  V
)  ->  ( ( F `  y )
( +g  `  U ) ( F `  z
) )  =  ( F `  ( y 
.+  z ) ) )
48473adant3r1 1160 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( ( F `  y ) ( +g  `  U ) ( F `
 z ) )  =  ( F `  ( y  .+  z
) ) )
4948oveq2d 5890 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( ( F `  x ) ( +g  `  U ) ( ( F `  y ) ( +g  `  U
) ( F `  z ) ) )  =  ( ( F `
 x ) ( +g  `  U ) ( F `  (
y  .+  z )
) ) )
5043, 46, 493eqtr4d 2338 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( ( ( F `
 x ) ( +g  `  U ) ( F `  y
) ) ( +g  `  U ) ( F `
 z ) )  =  ( ( F `
 x ) ( +g  `  U ) ( ( F `  y ) ( +g  `  U ) ( F `
 z ) ) ) )
51 simp1 955 . . . . . . . . . . . . 13  |-  ( ( ( F `  x
)  =  u  /\  ( F `  y )  =  v  /\  ( F `  z )  =  w )  ->  ( F `  x )  =  u )
52 simp2 956 . . . . . . . . . . . . 13  |-  ( ( ( F `  x
)  =  u  /\  ( F `  y )  =  v  /\  ( F `  z )  =  w )  ->  ( F `  y )  =  v )
5351, 52oveq12d 5892 . . . . . . . . . . . 12  |-  ( ( ( F `  x
)  =  u  /\  ( F `  y )  =  v  /\  ( F `  z )  =  w )  ->  (
( F `  x
) ( +g  `  U
) ( F `  y ) )  =  ( u ( +g  `  U ) v ) )
54 simp3 957 . . . . . . . . . . . 12  |-  ( ( ( F `  x
)  =  u  /\  ( F `  y )  =  v  /\  ( F `  z )  =  w )  ->  ( F `  z )  =  w )
5553, 54oveq12d 5892 . . . . . . . . . . 11  |-  ( ( ( F `  x
)  =  u  /\  ( F `  y )  =  v  /\  ( F `  z )  =  w )  ->  (
( ( F `  x ) ( +g  `  U ) ( F `
 y ) ) ( +g  `  U
) ( F `  z ) )  =  ( ( u ( +g  `  U ) v ) ( +g  `  U ) w ) )
5652, 54oveq12d 5892 . . . . . . . . . . . 12  |-  ( ( ( F `  x
)  =  u  /\  ( F `  y )  =  v  /\  ( F `  z )  =  w )  ->  (
( F `  y
) ( +g  `  U
) ( F `  z ) )  =  ( v ( +g  `  U ) w ) )
5751, 56oveq12d 5892 . . . . . . . . . . 11  |-  ( ( ( F `  x
)  =  u  /\  ( F `  y )  =  v  /\  ( F `  z )  =  w )  ->  (
( F `  x
) ( +g  `  U
) ( ( F `
 y ) ( +g  `  U ) ( F `  z
) ) )  =  ( u ( +g  `  U ) ( v ( +g  `  U
) w ) ) )
5855, 57eqeq12d 2310 . . . . . . . . . 10  |-  ( ( ( F `  x
)  =  u  /\  ( F `  y )  =  v  /\  ( F `  z )  =  w )  ->  (
( ( ( F `
 x ) ( +g  `  U ) ( F `  y
) ) ( +g  `  U ) ( F `
 z ) )  =  ( ( F `
 x ) ( +g  `  U ) ( ( F `  y ) ( +g  `  U ) ( F `
 z ) ) )  <->  ( ( u ( +g  `  U
) v ) ( +g  `  U ) w )  =  ( u ( +g  `  U
) ( v ( +g  `  U ) w ) ) ) )
5950, 58syl5ibcom 211 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( ( ( F `
 x )  =  u  /\  ( F `
 y )  =  v  /\  ( F `
 z )  =  w )  ->  (
( u ( +g  `  U ) v ) ( +g  `  U
) w )  =  ( u ( +g  `  U ) ( v ( +g  `  U
) w ) ) ) )
60593exp2 1169 . . . . . . . 8  |-  ( ph  ->  ( x  e.  V  ->  ( y  e.  V  ->  ( z  e.  V  ->  ( ( ( F `
 x )  =  u  /\  ( F `
 y )  =  v  /\  ( F `
 z )  =  w )  ->  (
( u ( +g  `  U ) v ) ( +g  `  U
) w )  =  ( u ( +g  `  U ) ( v ( +g  `  U
) w ) ) ) ) ) ) )
6160imp32 422 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( z  e.  V  ->  ( ( ( F `
 x )  =  u  /\  ( F `
 y )  =  v  /\  ( F `
 z )  =  w )  ->  (
( u ( +g  `  U ) v ) ( +g  `  U
) w )  =  ( u ( +g  `  U ) ( v ( +g  `  U
) w ) ) ) ) )
6261rexlimdv 2679 . . . . . 6  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( E. z  e.  V  ( ( F `
 x )  =  u  /\  ( F `
 y )  =  v  /\  ( F `
 z )  =  w )  ->  (
( u ( +g  `  U ) v ) ( +g  `  U
) w )  =  ( u ( +g  `  U ) ( v ( +g  `  U
) w ) ) ) )
6362rexlimdvva 2687 . . . . 5  |-  ( ph  ->  ( E. x  e.  V  E. y  e.  V  E. z  e.  V  ( ( F `
 x )  =  u  /\  ( F `
 y )  =  v  /\  ( F `
 z )  =  w )  ->  (
( u ( +g  `  U ) v ) ( +g  `  U
) w )  =  ( u ( +g  `  U ) ( v ( +g  `  U
) w ) ) ) )
6431, 63sylbid 206 . . . 4  |-  ( ph  ->  ( ( u  e.  B  /\  v  e.  B  /\  w  e.  B )  ->  (
( u ( +g  `  U ) v ) ( +g  `  U
) w )  =  ( u ( +g  `  U ) ( v ( +g  `  U
) w ) ) ) )
6564imp 418 . . 3  |-  ( (
ph  /\  ( u  e.  B  /\  v  e.  B  /\  w  e.  B ) )  -> 
( ( u ( +g  `  U ) v ) ( +g  `  U ) w )  =  ( u ( +g  `  U ) ( v ( +g  `  U ) w ) ) )
66 fof 5467 . . . . 5  |-  ( F : V -onto-> B  ->  F : V --> B )
673, 66syl 15 . . . 4  |-  ( ph  ->  F : V --> B )
68 imasmnd2.3 . . . 4  |-  ( ph  ->  .0.  e.  V )
69 ffvelrn 5679 . . . 4  |-  ( ( F : V --> B  /\  .0.  e.  V )  -> 
( F `  .0.  )  e.  B )
7067, 68, 69syl2anc 642 . . 3  |-  ( ph  ->  ( F `  .0.  )  e.  B )
7123, 24syl 15 . . . . . 6  |-  ( ph  ->  ( u  e.  ran  F  <->  E. x  e.  V  ( F `  x )  =  u ) )
7218, 71bitr3d 246 . . . . 5  |-  ( ph  ->  ( u  e.  B  <->  E. x  e.  V  ( F `  x )  =  u ) )
73 simpl 443 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  V )  ->  ph )
7468adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  V )  ->  .0.  e.  V )
75 simpr 447 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  V )  ->  x  e.  V )
763, 7, 1, 2, 4, 8, 9imasaddval 13450 . . . . . . . . 9  |-  ( (
ph  /\  .0.  e.  V  /\  x  e.  V
)  ->  ( ( F `  .0.  ) ( +g  `  U ) ( F `  x
) )  =  ( F `  (  .0.  .+  x ) ) )
7773, 74, 75, 76syl3anc 1182 . . . . . . . 8  |-  ( (
ph  /\  x  e.  V )  ->  (
( F `  .0.  ) ( +g  `  U
) ( F `  x ) )  =  ( F `  (  .0.  .+  x ) ) )
78 imasmnd2.4 . . . . . . . 8  |-  ( (
ph  /\  x  e.  V )  ->  ( F `  (  .0.  .+  x ) )  =  ( F `  x
) )
7977, 78eqtrd 2328 . . . . . . 7  |-  ( (
ph  /\  x  e.  V )  ->  (
( F `  .0.  ) ( +g  `  U
) ( F `  x ) )  =  ( F `  x
) )
80 oveq2 5882 . . . . . . . 8  |-  ( ( F `  x )  =  u  ->  (
( F `  .0.  ) ( +g  `  U
) ( F `  x ) )  =  ( ( F `  .0.  ) ( +g  `  U
) u ) )
81 id 19 . . . . . . . 8  |-  ( ( F `  x )  =  u  ->  ( F `  x )  =  u )
8280, 81eqeq12d 2310 . . . . . . 7  |-  ( ( F `  x )  =  u  ->  (
( ( F `  .0.  ) ( +g  `  U
) ( F `  x ) )  =  ( F `  x
)  <->  ( ( F `
 .0.  ) ( +g  `  U ) u )  =  u ) )
8379, 82syl5ibcom 211 . . . . . 6  |-  ( (
ph  /\  x  e.  V )  ->  (
( F `  x
)  =  u  -> 
( ( F `  .0.  ) ( +g  `  U
) u )  =  u ) )
8483rexlimdva 2680 . . . . 5  |-  ( ph  ->  ( E. x  e.  V  ( F `  x )  =  u  ->  ( ( F `
 .0.  ) ( +g  `  U ) u )  =  u ) )
8572, 84sylbid 206 . . . 4  |-  ( ph  ->  ( u  e.  B  ->  ( ( F `  .0.  ) ( +g  `  U
) u )  =  u ) )
8685imp 418 . . 3  |-  ( (
ph  /\  u  e.  B )  ->  (
( F `  .0.  ) ( +g  `  U
) u )  =  u )
873, 7, 1, 2, 4, 8, 9imasaddval 13450 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  V  /\  .0.  e.  V
)  ->  ( ( F `  x )
( +g  `  U ) ( F `  .0.  ) )  =  ( F `  ( x 
.+  .0.  ) )
)
8874, 87mpd3an3 1278 . . . . . . . 8  |-  ( (
ph  /\  x  e.  V )  ->  (
( F `  x
) ( +g  `  U
) ( F `  .0.  ) )  =  ( F `  ( x 
.+  .0.  ) )
)
89 imasmnd2.5 . . . . . . . 8  |-  ( (
ph  /\  x  e.  V )  ->  ( F `  ( x  .+  .0.  ) )  =  ( F `  x
) )
9088, 89eqtrd 2328 . . . . . . 7  |-  ( (
ph  /\  x  e.  V )  ->  (
( F `  x
) ( +g  `  U
) ( F `  .0.  ) )  =  ( F `  x ) )
91 oveq1 5881 . . . . . . . 8  |-  ( ( F `  x )  =  u  ->  (
( F `  x
) ( +g  `  U
) ( F `  .0.  ) )  =  ( u ( +g  `  U
) ( F `  .0.  ) ) )
9291, 81eqeq12d 2310 . . . . . . 7  |-  ( ( F `  x )  =  u  ->  (
( ( F `  x ) ( +g  `  U ) ( F `
 .0.  ) )  =  ( F `  x )  <->  ( u
( +g  `  U ) ( F `  .0.  ) )  =  u ) )
9390, 92syl5ibcom 211 . . . . . 6  |-  ( (
ph  /\  x  e.  V )  ->  (
( F `  x
)  =  u  -> 
( u ( +g  `  U ) ( F `
 .0.  ) )  =  u ) )
9493rexlimdva 2680 . . . . 5  |-  ( ph  ->  ( E. x  e.  V  ( F `  x )  =  u  ->  ( u ( +g  `  U ) ( F `  .0.  ) )  =  u ) )
9572, 94sylbid 206 . . . 4  |-  ( ph  ->  ( u  e.  B  ->  ( u ( +g  `  U ) ( F `
 .0.  ) )  =  u ) )
9695imp 418 . . 3  |-  ( (
ph  /\  u  e.  B )  ->  (
u ( +g  `  U
) ( F `  .0.  ) )  =  u )
975, 6, 15, 65, 70, 86, 96ismndd 14412 . 2  |-  ( ph  ->  U  e.  Mnd )
985, 6, 70, 86, 96grpidd 14411 . 2  |-  ( ph  ->  ( F `  .0.  )  =  ( 0g `  U ) )
9997, 98jca 518 1  |-  ( ph  ->  ( U  e.  Mnd  /\  ( F `  .0.  )  =  ( 0g `  U ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   E.wrex 2557    X. cxp 4703   ran crn 4706    Fn wfn 5266   -->wf 5267   -onto->wfo 5269   ` cfv 5271  (class class class)co 5874   Basecbs 13164   +g cplusg 13224   0gc0g 13416    "s cimas 13423   Mndcmnd 14377
This theorem is referenced by:  imasmnd  14426
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-fz 10799  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-plusg 13237  df-mulr 13238  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-0g 13420  df-imas 13427  df-mnd 14383
  Copyright terms: Public domain W3C validator