MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasmulr Unicode version

Theorem imasmulr 13520
Description: The ring multiplication in an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 11-Jul-2015.)
Hypotheses
Ref Expression
imasbas.u  |-  ( ph  ->  U  =  ( F 
"s  R ) )
imasbas.v  |-  ( ph  ->  V  =  ( Base `  R ) )
imasbas.f  |-  ( ph  ->  F : V -onto-> B
)
imasbas.r  |-  ( ph  ->  R  e.  Z )
imasmulr.p  |-  .x.  =  ( .r `  R )
imasmulr.t  |-  .xb  =  ( .r `  U )
Assertion
Ref Expression
imasmulr  |-  ( ph  -> 
.xb  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. } )
Distinct variable groups:    q, p, F    R, p, q    ph, p, q    V, p, q
Allowed substitution hints:    B( q, p)    .xb ( q, p)    .x. ( q, p)    U( q, p)    Z( q, p)

Proof of Theorem imasmulr
Dummy variables  g  h  i  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasmulr.t . . 3  |-  .xb  =  ( .r `  U )
2 imasbas.u . . . . 5  |-  ( ph  ->  U  =  ( F 
"s  R ) )
3 imasbas.v . . . . 5  |-  ( ph  ->  V  =  ( Base `  R ) )
4 eqid 2358 . . . . 5  |-  ( +g  `  R )  =  ( +g  `  R )
5 imasmulr.p . . . . 5  |-  .x.  =  ( .r `  R )
6 eqid 2358 . . . . 5  |-  (Scalar `  R )  =  (Scalar `  R )
7 eqid 2358 . . . . 5  |-  ( Base `  (Scalar `  R )
)  =  ( Base `  (Scalar `  R )
)
8 eqid 2358 . . . . 5  |-  ( .s
`  R )  =  ( .s `  R
)
9 eqid 2358 . . . . 5  |-  ( TopOpen `  R )  =  (
TopOpen `  R )
10 eqid 2358 . . . . 5  |-  ( dist `  R )  =  (
dist `  R )
11 eqid 2358 . . . . 5  |-  ( le
`  R )  =  ( le `  R
)
12 imasbas.f . . . . . 6  |-  ( ph  ->  F : V -onto-> B
)
13 imasbas.r . . . . . 6  |-  ( ph  ->  R  e.  Z )
14 eqid 2358 . . . . . 6  |-  ( +g  `  U )  =  ( +g  `  U )
152, 3, 12, 13, 4, 14imasplusg 13519 . . . . 5  |-  ( ph  ->  ( +g  `  U
)  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } )
16 eqidd 2359 . . . . 5  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. } )
17 eqidd 2359 . . . . 5  |-  ( ph  ->  U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  R
) ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s `  R
) q ) ) )  =  U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  R ) ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s
`  R ) q ) ) ) )
18 eqidd 2359 . . . . 5  |-  ( ph  ->  ( ( TopOpen `  R
) qTop  F )  =  ( ( TopOpen `  R ) qTop  F ) )
19 eqid 2358 . . . . . 6  |-  ( dist `  U )  =  (
dist `  U )
202, 3, 12, 13, 10, 19imasds 13515 . . . . 5  |-  ( ph  ->  ( dist `  U
)  =  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  {
h  e.  ( ( V  X.  V )  ^m  ( 1 ... n ) )  |  ( ( F `  ( 1st `  ( h `
 1 ) ) )  =  x  /\  ( F `  ( 2nd `  ( h `  n
) ) )  =  y  /\  A. i  e.  ( 1 ... (
n  -  1 ) ) ( F `  ( 2nd `  ( h `
 i ) ) )  =  ( F `
 ( 1st `  (
h `  ( i  +  1 ) ) ) ) ) } 
|->  ( RR* s  gsumg  ( (
dist `  R )  o.  g ) ) ) ,  RR* ,  `'  <  ) ) )
21 eqidd 2359 . . . . 5  |-  ( ph  ->  ( ( F  o.  ( le `  R ) )  o.  `' F
)  =  ( ( F  o.  ( le
`  R ) )  o.  `' F ) )
222, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 16, 17, 18, 20, 21, 12, 13imasval 13513 . . . 4  |-  ( ph  ->  U  =  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  U ) >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. } >. }  u.  { <. (Scalar ` 
ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  R
) ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s `  R
) q ) ) ) >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( dist `  U
) >. } ) )
2322fveq2d 5612 . . 3  |-  ( ph  ->  ( .r `  U
)  =  ( .r
`  ( ( {
<. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  U ) >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. } >. }  u.  { <. (Scalar ` 
ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  R
) ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s `  R
) q ) ) ) >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( dist `  U
) >. } ) ) )
241, 23syl5eq 2402 . 2  |-  ( ph  -> 
.xb  =  ( .r
`  ( ( {
<. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  U ) >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. } >. }  u.  { <. (Scalar ` 
ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  R
) ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s `  R
) q ) ) ) >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( dist `  U
) >. } ) ) )
25 fvex 5622 . . . . 5  |-  ( Base `  R )  e.  _V
263, 25syl6eqel 2446 . . . 4  |-  ( ph  ->  V  e.  _V )
27 snex 4297 . . . . . . 7  |-  { <. <.
( F `  p
) ,  ( F `
 q ) >. ,  ( F `  ( p  .x.  q ) ) >. }  e.  _V
2827rgenw 2686 . . . . . 6  |-  A. q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. }  e.  _V
29 iunexg 5853 . . . . . 6  |-  ( ( V  e.  _V  /\  A. q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  e.  _V )  ->  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. }  e.  _V )
3026, 28, 29sylancl 643 . . . . 5  |-  ( ph  ->  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  e.  _V )
3130ralrimivw 2703 . . . 4  |-  ( ph  ->  A. p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  e.  _V )
32 iunexg 5853 . . . 4  |-  ( ( V  e.  _V  /\  A. p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  e.  _V )  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. }  e.  _V )
3326, 31, 32syl2anc 642 . . 3  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  e.  _V )
34 eqid 2358 . . . . 5  |-  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  U ) >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. } >. }  u.  { <. (Scalar ` 
ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  R
) ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s `  R
) q ) ) ) >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( dist `  U
) >. } )  =  ( ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( +g  `  U
) >. ,  <. ( .r `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. } >. }  u.  { <. (Scalar ` 
ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  R
) ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s `  R
) q ) ) ) >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( dist `  U
) >. } )
3534imasvalstr 13451 . . . 4  |-  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  U ) >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. } >. }  u.  { <. (Scalar ` 
ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  R
) ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s `  R
) q ) ) ) >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( dist `  U
) >. } ) Struct  <. 1 , ; 1 2 >.
36 mulrid 13351 . . . 4  |-  .r  = Slot  ( .r `  ndx )
37 snsstp3 3847 . . . . . 6  |-  { <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. } >. } 
C_  { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( +g  `  U
) >. ,  <. ( .r `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. } >. }
38 ssun1 3414 . . . . . 6  |-  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( +g  `  U
) >. ,  <. ( .r `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. } >. } 
C_  ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( +g  `  U
) >. ,  <. ( .r `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. } >. }  u.  { <. (Scalar ` 
ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  R
) ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s `  R
) q ) ) ) >. } )
3937, 38sstri 3264 . . . . 5  |-  { <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. } >. } 
C_  ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( +g  `  U
) >. ,  <. ( .r `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. } >. }  u.  { <. (Scalar ` 
ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  R
) ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s `  R
) q ) ) ) >. } )
40 ssun1 3414 . . . . 5  |-  ( {
<. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  U ) >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. } >. }  u.  { <. (Scalar ` 
ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  R
) ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s `  R
) q ) ) ) >. } )  C_  ( ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( +g  `  U
) >. ,  <. ( .r `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. } >. }  u.  { <. (Scalar ` 
ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  R
) ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s `  R
) q ) ) ) >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( dist `  U
) >. } )
4139, 40sstri 3264 . . . 4  |-  { <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. } >. } 
C_  ( ( {
<. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  U ) >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. } >. }  u.  { <. (Scalar ` 
ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  R
) ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s `  R
) q ) ) ) >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( dist `  U
) >. } )
4235, 36, 41strfv 13277 . . 3  |-  ( U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. }  e.  _V  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  =  ( .r `  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  U ) >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. } >. }  u.  { <. (Scalar ` 
ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  R
) ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s `  R
) q ) ) ) >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( dist `  U
) >. } ) ) )
4333, 42syl 15 . 2  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  =  ( .r `  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  U ) >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. } >. }  u.  { <. (Scalar ` 
ndx ) ,  (Scalar `  R ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  R
) ) ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p ( .s `  R
) q ) ) ) >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  R ) qTop  F
) >. ,  <. ( le `  ndx ) ,  ( ( F  o.  ( le `  R ) )  o.  `' F
) >. ,  <. ( dist `  ndx ) ,  ( dist `  U
) >. } ) ) )
4424, 43eqtr4d 2393 1  |-  ( ph  -> 
.xb  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1642    e. wcel 1710   A.wral 2619   _Vcvv 2864    u. cun 3226   {csn 3716   {cpr 3717   {ctp 3718   <.cop 3719   U_ciun 3986   `'ccnv 4770    o. ccom 4775   -onto->wfo 5335   ` cfv 5337  (class class class)co 5945    e. cmpt2 5947   1c1 8828   2c2 9885  ;cdc 10216   ndxcnx 13242   Basecbs 13245   +g cplusg 13305   .rcmulr 13306  Scalarcsca 13308   .scvsca 13309  TopSetcts 13311   lecple 13312   distcds 13314   TopOpenctopn 13425   qTop cqtop 13505    "s cimas 13506
This theorem is referenced by:  imassca  13521  imasvsca  13522  imastset  13523  imasle  13524  imasmulfn  13535  imasmulval  13536  imasmulf  13537  divsmulval  13556  divsmulf  13557
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-cnex 8883  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-pre-mulgt0 8904
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-int 3944  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-1st 6209  df-2nd 6210  df-riota 6391  df-recs 6475  df-rdg 6510  df-1o 6566  df-oadd 6570  df-er 6747  df-en 6952  df-dom 6953  df-sdom 6954  df-fin 6955  df-sup 7284  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-sub 9129  df-neg 9130  df-nn 9837  df-2 9894  df-3 9895  df-4 9896  df-5 9897  df-6 9898  df-7 9899  df-8 9900  df-9 9901  df-10 9902  df-n0 10058  df-z 10117  df-dec 10217  df-uz 10323  df-fz 10875  df-struct 13247  df-ndx 13248  df-slot 13249  df-base 13250  df-plusg 13318  df-mulr 13319  df-sca 13321  df-vsca 13322  df-tset 13324  df-ple 13325  df-ds 13327  df-imas 13510
  Copyright terms: Public domain W3C validator