Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasng Structured version   Unicode version

Theorem imasng 5255
 Description: The image of a singleton. (Contributed by NM, 8-May-2005.)
Assertion
Ref Expression
imasng
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem imasng
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 elex 2970 . 2
2 dfima2 5234 . . 3
3 breq1 4240 . . . . 5
43rexsng 3871 . . . 4
54abbidv 2556 . . 3
62, 5syl5eq 2486 . 2
71, 6syl 16 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1653   wcel 1727  cab 2428  wrex 2712  cvv 2962  csn 3838   class class class wbr 4237  cima 4910 This theorem is referenced by:  relimasn  5256  elimasn  5258  args  5261  dfec2  6937  dfac3  8033  shftfib  11918  areacirclem5  26334 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-sep 4355  ax-nul 4363  ax-pr 4432 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2716  df-rex 2717  df-rab 2720  df-v 2964  df-sbc 3168  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-nul 3614  df-if 3764  df-sn 3844  df-pr 3845  df-op 3847  df-br 4238  df-opab 4292  df-xp 4913  df-cnv 4915  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920
 Copyright terms: Public domain W3C validator