MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasng Unicode version

Theorem imasng 5193
Description: The image of a singleton. (Contributed by NM, 8-May-2005.)
Assertion
Ref Expression
imasng  |-  ( A  e.  B  ->  ( R " { A }
)  =  { y  |  A R y } )
Distinct variable groups:    y, A    y, R
Allowed substitution hint:    B( y)

Proof of Theorem imasng
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elex 2932 . 2  |-  ( A  e.  B  ->  A  e.  _V )
2 dfima2 5172 . . 3  |-  ( R
" { A }
)  =  { y  |  E. x  e. 
{ A } x R y }
3 breq1 4183 . . . . 5  |-  ( x  =  A  ->  (
x R y  <->  A R
y ) )
43rexsng 3815 . . . 4  |-  ( A  e.  _V  ->  ( E. x  e.  { A } x R y  <-> 
A R y ) )
54abbidv 2526 . . 3  |-  ( A  e.  _V  ->  { y  |  E. x  e. 
{ A } x R y }  =  { y  |  A R y } )
62, 5syl5eq 2456 . 2  |-  ( A  e.  _V  ->  ( R " { A }
)  =  { y  |  A R y } )
71, 6syl 16 1  |-  ( A  e.  B  ->  ( R " { A }
)  =  { y  |  A R y } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649    e. wcel 1721   {cab 2398   E.wrex 2675   _Vcvv 2924   {csn 3782   class class class wbr 4180   "cima 4848
This theorem is referenced by:  relimasn  5194  elimasn  5196  args  5199  dfec2  6875  dfac3  7966  shftfib  11850  areacirclem6  26194
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pr 4371
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-rab 2683  df-v 2926  df-sbc 3130  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-sn 3788  df-pr 3789  df-op 3791  df-br 4181  df-opab 4235  df-xp 4851  df-cnv 4853  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858
  Copyright terms: Public domain W3C validator