MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasval Unicode version

Theorem imasval 13513
Description: Value of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 11-Jul-2015.)
Hypotheses
Ref Expression
imasval.u  |-  ( ph  ->  U  =  ( F 
"s  R ) )
imasval.v  |-  ( ph  ->  V  =  ( Base `  R ) )
imasval.p  |-  .+  =  ( +g  `  R )
imasval.m  |-  .X.  =  ( .r `  R )
imasval.g  |-  G  =  (Scalar `  R )
imasval.k  |-  K  =  ( Base `  G
)
imasval.q  |-  .x.  =  ( .s `  R )
imasval.j  |-  J  =  ( TopOpen `  R )
imasval.e  |-  E  =  ( dist `  R
)
imasval.n  |-  N  =  ( le `  R
)
imasval.a  |-  ( ph  -> 
.+b  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.+  q ) )
>. } )
imasval.t  |-  ( ph  -> 
.xb  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.X.  q ) )
>. } )
imasval.s  |-  ( ph  -> 
.(x)  =  U_ q  e.  V  ( p  e.  K ,  x  e. 
{ ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) ) )
imasval.o  |-  ( ph  ->  O  =  ( J qTop 
F ) )
imasval.d  |-  ( ph  ->  D  =  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  {
h  e.  ( ( V  X.  V )  ^m  ( 1 ... n ) )  |  ( ( F `  ( 1st `  ( h `
 1 ) ) )  =  x  /\  ( F `  ( 2nd `  ( h `  n
) ) )  =  y  /\  A. i  e.  ( 1 ... (
n  -  1 ) ) ( F `  ( 2nd `  ( h `
 i ) ) )  =  ( F `
 ( 1st `  (
h `  ( i  +  1 ) ) ) ) ) } 
|->  ( RR* s  gsumg  ( E  o.  g ) ) ) ,  RR* ,  `'  <  ) ) )
imasval.l  |-  ( ph  -> 
.<_  =  ( ( F  o.  N )  o.  `' F ) )
imasval.f  |-  ( ph  ->  F : V -onto-> B
)
imasval.r  |-  ( ph  ->  R  e.  Z )
Assertion
Ref Expression
imasval  |-  ( ph  ->  U  =  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. ( .r `  ndx ) ,  .xb  >. }  u.  { <. (Scalar `  ndx ) ,  G >. ,  <. ( .s `  ndx ) , 
.(x)  >. } )  u. 
{ <. (TopSet `  ndx ) ,  O >. , 
<. ( le `  ndx ) ,  .<_  >. ,  <. (
dist `  ndx ) ,  D >. } ) )
Distinct variable groups:    g, h, i, n, p, q, x, y, F    R, g, h, i, n, p, q, x, y    h, V, p, q    ph, g, h, i, n, p, q, x, y
Allowed substitution hints:    B( x, y, g, h, i, n, q, p)    D( x, y, g, h, i, n, q, p)    .+ ( x, y, g, h, i, n, q, p)    .+b ( x, y, g, h, i, n, q, p)    .xb ( x, y, g, h, i, n, q, p)    .x. ( x, y, g, h, i, n, q, p)    .X. ( x, y, g, h, i, n, q, p)    .(x) ( x, y, g, h, i, n, q, p)    U( x, y, g, h, i, n, q, p)    E( x, y, g, h, i, n, q, p)    G( x, y, g, h, i, n, q, p)    J( x, y, g, h, i, n, q, p)    K( x, y, g, h, i, n, q, p)    .<_ ( x, y, g, h, i, n, q, p)    N( x, y, g, h, i, n, q, p)    O( x, y, g, h, i, n, q, p)    V( x, y, g, i, n)    Z( x, y, g, h, i, n, q, p)

Proof of Theorem imasval
Dummy variables  f 
r  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasval.u . 2  |-  ( ph  ->  U  =  ( F 
"s  R ) )
2 df-imas 13510 . . . 4  |-  "s  =  (
f  e.  _V , 
r  e.  _V  |->  [_ ( Base `  r )  /  v ]_ (
( { <. ( Base `  ndx ) ,  ran  f >. ,  <. ( +g  `  ndx ) ,  U_ p  e.  v 
U_ q  e.  v  { <. <. ( f `  p ) ,  ( f `  q )
>. ,  ( f `  ( p ( +g  `  r ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  v 
U_ q  e.  v  { <. <. ( f `  p ) ,  ( f `  q )
>. ,  ( f `  ( p ( .r
`  r ) q ) ) >. } >. }  u.  { <. (Scalar ` 
ndx ) ,  (Scalar `  r ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  v  ( p  e.  (
Base `  (Scalar `  r
) ) ,  x  e.  { ( f `  q ) }  |->  ( f `  ( p ( .s `  r
) q ) ) ) >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  r ) qTop  f
) >. ,  <. ( le `  ndx ) ,  ( ( f  o.  ( le `  r
) )  o.  `' f ) >. ,  <. (
dist `  ndx ) ,  ( x  e.  ran  f ,  y  e.  ran  f  |->  sup ( U_ n  e.  NN  ran  ( g  e.  {
h  e.  ( ( v  X.  v )  ^m  ( 1 ... n ) )  |  ( ( f `  ( 1st `  ( h `
 1 ) ) )  =  x  /\  ( f `  ( 2nd `  ( h `  n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( f `  ( 2nd `  ( h `  i
) ) )  =  ( f `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR* s  gsumg  ( ( dist `  r
)  o.  g ) ) ) ,  RR* ,  `'  <  ) ) >. } ) )
32a1i 10 . . 3  |-  ( ph  ->  "s  =  ( f  e. 
_V ,  r  e. 
_V  |->  [_ ( Base `  r
)  /  v ]_ ( ( { <. (
Base `  ndx ) ,  ran  f >. ,  <. ( +g  `  ndx ) ,  U_ p  e.  v 
U_ q  e.  v  { <. <. ( f `  p ) ,  ( f `  q )
>. ,  ( f `  ( p ( +g  `  r ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  v 
U_ q  e.  v  { <. <. ( f `  p ) ,  ( f `  q )
>. ,  ( f `  ( p ( .r
`  r ) q ) ) >. } >. }  u.  { <. (Scalar ` 
ndx ) ,  (Scalar `  r ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  v  ( p  e.  (
Base `  (Scalar `  r
) ) ,  x  e.  { ( f `  q ) }  |->  ( f `  ( p ( .s `  r
) q ) ) ) >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  r ) qTop  f
) >. ,  <. ( le `  ndx ) ,  ( ( f  o.  ( le `  r
) )  o.  `' f ) >. ,  <. (
dist `  ndx ) ,  ( x  e.  ran  f ,  y  e.  ran  f  |->  sup ( U_ n  e.  NN  ran  ( g  e.  {
h  e.  ( ( v  X.  v )  ^m  ( 1 ... n ) )  |  ( ( f `  ( 1st `  ( h `
 1 ) ) )  =  x  /\  ( f `  ( 2nd `  ( h `  n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( f `  ( 2nd `  ( h `  i
) ) )  =  ( f `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR* s  gsumg  ( ( dist `  r
)  o.  g ) ) ) ,  RR* ,  `'  <  ) ) >. } ) ) )
4 fvex 5622 . . . . 5  |-  ( Base `  r )  e.  _V
54a1i 10 . . . 4  |-  ( (
ph  /\  ( f  =  F  /\  r  =  R ) )  -> 
( Base `  r )  e.  _V )
6 simplrl 736 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  f  =  F )
76rneqd 4988 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ran  f  =  ran  F )
8 imasval.f . . . . . . . . . . 11  |-  ( ph  ->  F : V -onto-> B
)
9 forn 5537 . . . . . . . . . . 11  |-  ( F : V -onto-> B  ->  ran  F  =  B )
108, 9syl 15 . . . . . . . . . 10  |-  ( ph  ->  ran  F  =  B )
1110ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ran  F  =  B )
127, 11eqtrd 2390 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ran  f  =  B )
1312opeq2d 3884 . . . . . . 7  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  <. ( Base `  ndx ) ,  ran  f >.  =  <. ( Base `  ndx ) ,  B >. )
14 simplrr 737 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  r  =  R )
1514fveq2d 5612 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( Base `  r )  =  (
Base `  R )
)
16 simpr 447 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  v  =  ( Base `  r )
)
17 imasval.v . . . . . . . . . . . 12  |-  ( ph  ->  V  =  ( Base `  R ) )
1817ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  V  =  ( Base `  R )
)
1915, 16, 183eqtr4d 2400 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  v  =  V )
206fveq1d 5610 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( f `  p )  =  ( F `  p ) )
216fveq1d 5610 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( f `  q )  =  ( F `  q ) )
2220, 21opeq12d 3885 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  <. ( f `
 p ) ,  ( f `  q
) >.  =  <. ( F `  p ) ,  ( F `  q ) >. )
2314fveq2d 5612 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( +g  `  r )  =  ( +g  `  R ) )
24 imasval.p . . . . . . . . . . . . . . . 16  |-  .+  =  ( +g  `  R )
2523, 24syl6eqr 2408 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( +g  `  r )  =  .+  )
2625oveqd 5962 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( p
( +g  `  r ) q )  =  ( p  .+  q ) )
276, 26fveq12d 5614 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( f `  ( p ( +g  `  r ) q ) )  =  ( F `
 ( p  .+  q ) ) )
2822, 27opeq12d 3885 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( +g  `  r
) q ) )
>.  =  <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.+  q ) )
>. )
2928sneqd 3729 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  { <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( +g  `  r
) q ) )
>. }  =  { <. <.
( F `  p
) ,  ( F `
 q ) >. ,  ( F `  ( p  .+  q ) ) >. } )
3019, 29iuneq12d 4010 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  U_ q  e.  v  { <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( +g  `  r
) q ) )
>. }  =  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.+  q ) )
>. } )
3119, 30iuneq12d 4010 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  U_ p  e.  v  U_ q  e.  v  { <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( +g  `  r
) q ) )
>. }  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.+  q ) )
>. } )
32 imasval.a . . . . . . . . . 10  |-  ( ph  -> 
.+b  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.+  q ) )
>. } )
3332ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  .+b  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.+  q ) )
>. } )
3431, 33eqtr4d 2393 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  U_ p  e.  v  U_ q  e.  v  { <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( +g  `  r
) q ) )
>. }  =  .+b  )
3534opeq2d 3884 . . . . . . 7  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  <. ( +g  ` 
ndx ) ,  U_ p  e.  v  U_ q  e.  v  { <. <. ( f `  p ) ,  ( f `  q )
>. ,  ( f `  ( p ( +g  `  r ) q ) ) >. } >.  =  <. ( +g  `  ndx ) ,  .+b  >. )
3614fveq2d 5612 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( .r `  r )  =  ( .r `  R ) )
37 imasval.m . . . . . . . . . . . . . . . 16  |-  .X.  =  ( .r `  R )
3836, 37syl6eqr 2408 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( .r `  r )  =  .X.  )
3938oveqd 5962 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( p
( .r `  r
) q )  =  ( p  .X.  q
) )
406, 39fveq12d 5614 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( f `  ( p ( .r
`  r ) q ) )  =  ( F `  ( p 
.X.  q ) ) )
4122, 40opeq12d 3885 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( .r `  r
) q ) )
>.  =  <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.X.  q ) )
>. )
4241sneqd 3729 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  { <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( .r `  r
) q ) )
>. }  =  { <. <.
( F `  p
) ,  ( F `
 q ) >. ,  ( F `  ( p  .X.  q ) ) >. } )
4319, 42iuneq12d 4010 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  U_ q  e.  v  { <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( .r `  r
) q ) )
>. }  =  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.X.  q ) )
>. } )
4419, 43iuneq12d 4010 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  U_ p  e.  v  U_ q  e.  v  { <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( .r `  r
) q ) )
>. }  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.X.  q ) )
>. } )
45 imasval.t . . . . . . . . . 10  |-  ( ph  -> 
.xb  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.X.  q ) )
>. } )
4645ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  .xb  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.X.  q ) )
>. } )
4744, 46eqtr4d 2393 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  U_ p  e.  v  U_ q  e.  v  { <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( .r `  r
) q ) )
>. }  =  .xb  )
4847opeq2d 3884 . . . . . . 7  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  <. ( .r
`  ndx ) ,  U_ p  e.  v  U_ q  e.  v  { <. <. ( f `  p ) ,  ( f `  q )
>. ,  ( f `  ( p ( .r
`  r ) q ) ) >. } >.  = 
<. ( .r `  ndx ) ,  .xb  >. )
4913, 35, 48tpeq123d 3797 . . . . . 6  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  { <. ( Base `  ndx ) ,  ran  f >. ,  <. ( +g  `  ndx ) ,  U_ p  e.  v 
U_ q  e.  v  { <. <. ( f `  p ) ,  ( f `  q )
>. ,  ( f `  ( p ( +g  `  r ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  v 
U_ q  e.  v  { <. <. ( f `  p ) ,  ( f `  q )
>. ,  ( f `  ( p ( .r
`  r ) q ) ) >. } >. }  =  { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+b  >. ,  <. ( .r `  ndx ) , 
.xb  >. } )
5014fveq2d 5612 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  (Scalar `  r
)  =  (Scalar `  R ) )
51 imasval.g . . . . . . . . 9  |-  G  =  (Scalar `  R )
5250, 51syl6eqr 2408 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  (Scalar `  r
)  =  G )
5352opeq2d 3884 . . . . . . 7  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  <. (Scalar `  ndx ) ,  (Scalar `  r ) >.  =  <. (Scalar `  ndx ) ,  G >. )
5452fveq2d 5612 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( Base `  (Scalar `  r )
)  =  ( Base `  G ) )
55 imasval.k . . . . . . . . . . . 12  |-  K  =  ( Base `  G
)
5654, 55syl6eqr 2408 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( Base `  (Scalar `  r )
)  =  K )
5721sneqd 3729 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  { (
f `  q ) }  =  { ( F `  q ) } )
5814fveq2d 5612 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( .s `  r )  =  ( .s `  R ) )
59 imasval.q . . . . . . . . . . . . . 14  |-  .x.  =  ( .s `  R )
6058, 59syl6eqr 2408 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( .s `  r )  =  .x.  )
6160oveqd 5962 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( p
( .s `  r
) q )  =  ( p  .x.  q
) )
626, 61fveq12d 5614 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( f `  ( p ( .s
`  r ) q ) )  =  ( F `  ( p 
.x.  q ) ) )
6356, 57, 62mpt2eq123dv 5997 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( p  e.  ( Base `  (Scalar `  r ) ) ,  x  e.  { ( f `  q ) }  |->  ( f `  ( p ( .s
`  r ) q ) ) )  =  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) ) )
6463iuneq2d 4011 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  r ) ) ,  x  e.  { ( f `  q ) }  |->  ( f `  ( p ( .s
`  r ) q ) ) )  = 
U_ q  e.  V  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) ) )
6519iuneq1d 4009 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  U_ q  e.  v  ( p  e.  ( Base `  (Scalar `  r ) ) ,  x  e.  { ( f `  q ) }  |->  ( f `  ( p ( .s
`  r ) q ) ) )  = 
U_ q  e.  V  ( p  e.  ( Base `  (Scalar `  r
) ) ,  x  e.  { ( f `  q ) }  |->  ( f `  ( p ( .s `  r
) q ) ) ) )
66 imasval.s . . . . . . . . . 10  |-  ( ph  -> 
.(x)  =  U_ q  e.  V  ( p  e.  K ,  x  e. 
{ ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) ) )
6766ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  .(x)  =  U_ q  e.  V  (
p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) ) )
6864, 65, 673eqtr4d 2400 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  U_ q  e.  v  ( p  e.  ( Base `  (Scalar `  r ) ) ,  x  e.  { ( f `  q ) }  |->  ( f `  ( p ( .s
`  r ) q ) ) )  = 
.(x)  )
6968opeq2d 3884 . . . . . . 7  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  <. ( .s
`  ndx ) ,  U_ q  e.  v  (
p  e.  ( Base `  (Scalar `  r )
) ,  x  e. 
{ ( f `  q ) }  |->  ( f `  ( p ( .s `  r
) q ) ) ) >.  =  <. ( .s `  ndx ) ,  .(x)  >. )
7053, 69preq12d 3790 . . . . . 6  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  { <. (Scalar ` 
ndx ) ,  (Scalar `  r ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  v  ( p  e.  (
Base `  (Scalar `  r
) ) ,  x  e.  { ( f `  q ) }  |->  ( f `  ( p ( .s `  r
) q ) ) ) >. }  =  { <. (Scalar `  ndx ) ,  G >. ,  <. ( .s `  ndx ) , 
.(x)  >. } )
7149, 70uneq12d 3406 . . . . 5  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( { <. ( Base `  ndx ) ,  ran  f >. ,  <. ( +g  `  ndx ) ,  U_ p  e.  v  U_ q  e.  v  { <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( +g  `  r
) q ) )
>. } >. ,  <. ( .r `  ndx ) , 
U_ p  e.  v 
U_ q  e.  v  { <. <. ( f `  p ) ,  ( f `  q )
>. ,  ( f `  ( p ( .r
`  r ) q ) ) >. } >. }  u.  { <. (Scalar ` 
ndx ) ,  (Scalar `  r ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  v  ( p  e.  (
Base `  (Scalar `  r
) ) ,  x  e.  { ( f `  q ) }  |->  ( f `  ( p ( .s `  r
) q ) ) ) >. } )  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+b  >. ,  <. ( .r `  ndx ) , 
.xb  >. }  u.  { <. (Scalar `  ndx ) ,  G >. ,  <. ( .s `  ndx ) , 
.(x)  >. } ) )
7214fveq2d 5612 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( TopOpen `  r )  =  (
TopOpen `  R ) )
73 imasval.j . . . . . . . . . 10  |-  J  =  ( TopOpen `  R )
7472, 73syl6eqr 2408 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( TopOpen `  r )  =  J )
7574, 6oveq12d 5963 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( ( TopOpen
`  r ) qTop  f
)  =  ( J qTop 
F ) )
76 imasval.o . . . . . . . . 9  |-  ( ph  ->  O  =  ( J qTop 
F ) )
7776ad2antrr 706 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  O  =  ( J qTop  F )
)
7875, 77eqtr4d 2393 . . . . . . 7  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( ( TopOpen
`  r ) qTop  f
)  =  O )
7978opeq2d 3884 . . . . . 6  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  <. (TopSet `  ndx ) ,  ( (
TopOpen `  r ) qTop  f
) >.  =  <. (TopSet ` 
ndx ) ,  O >. )
8014fveq2d 5612 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( le `  r )  =  ( le `  R ) )
81 imasval.n . . . . . . . . . . 11  |-  N  =  ( le `  R
)
8280, 81syl6eqr 2408 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( le `  r )  =  N )
836, 82coeq12d 4930 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( f  o.  ( le `  r
) )  =  ( F  o.  N ) )
846cnveqd 4939 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  `' f  =  `' F )
8583, 84coeq12d 4930 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( (
f  o.  ( le
`  r ) )  o.  `' f )  =  ( ( F  o.  N )  o.  `' F ) )
86 imasval.l . . . . . . . . 9  |-  ( ph  -> 
.<_  =  ( ( F  o.  N )  o.  `' F ) )
8786ad2antrr 706 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  .<_  =  ( ( F  o.  N
)  o.  `' F
) )
8885, 87eqtr4d 2393 . . . . . . 7  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( (
f  o.  ( le
`  r ) )  o.  `' f )  =  .<_  )
8988opeq2d 3884 . . . . . 6  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  <. ( le
`  ndx ) ,  ( ( f  o.  ( le `  r ) )  o.  `' f )
>.  =  <. ( le
`  ndx ) ,  .<_  >.
)
9019, 19xpeq12d 4796 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( v  X.  v )  =  ( V  X.  V ) )
9190oveq1d 5960 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( (
v  X.  v )  ^m  ( 1 ... n ) )  =  ( ( V  X.  V )  ^m  (
1 ... n ) ) )
926fveq1d 5610 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( f `  ( 1st `  (
h `  1 )
) )  =  ( F `  ( 1st `  ( h `  1
) ) ) )
9392eqeq1d 2366 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( (
f `  ( 1st `  ( h `  1
) ) )  =  x  <->  ( F `  ( 1st `  ( h `
 1 ) ) )  =  x ) )
946fveq1d 5610 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( f `  ( 2nd `  (
h `  n )
) )  =  ( F `  ( 2nd `  ( h `  n
) ) ) )
9594eqeq1d 2366 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( (
f `  ( 2nd `  ( h `  n
) ) )  =  y  <->  ( F `  ( 2nd `  ( h `
 n ) ) )  =  y ) )
966fveq1d 5610 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( f `  ( 2nd `  (
h `  i )
) )  =  ( F `  ( 2nd `  ( h `  i
) ) ) )
976fveq1d 5610 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( f `  ( 1st `  (
h `  ( i  +  1 ) ) ) )  =  ( F `  ( 1st `  ( h `  (
i  +  1 ) ) ) ) )
9896, 97eqeq12d 2372 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( (
f `  ( 2nd `  ( h `  i
) ) )  =  ( f `  ( 1st `  ( h `  ( i  +  1 ) ) ) )  <-> 
( F `  ( 2nd `  ( h `  i ) ) )  =  ( F `  ( 1st `  ( h `
 ( i  +  1 ) ) ) ) ) )
9998ralbidv 2639 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( A. i  e.  ( 1 ... ( n  - 
1 ) ) ( f `  ( 2nd `  ( h `  i
) ) )  =  ( f `  ( 1st `  ( h `  ( i  +  1 ) ) ) )  <->  A. i  e.  (
1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) )
10093, 95, 993anbi123d 1252 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( (
( f `  ( 1st `  ( h ` 
1 ) ) )  =  x  /\  (
f `  ( 2nd `  ( h `  n
) ) )  =  y  /\  A. i  e.  ( 1 ... (
n  -  1 ) ) ( f `  ( 2nd `  ( h `
 i ) ) )  =  ( f `
 ( 1st `  (
h `  ( i  +  1 ) ) ) ) )  <->  ( ( F `  ( 1st `  ( h `  1
) ) )  =  x  /\  ( F `
 ( 2nd `  (
h `  n )
) )  =  y  /\  A. i  e.  ( 1 ... (
n  -  1 ) ) ( F `  ( 2nd `  ( h `
 i ) ) )  =  ( F `
 ( 1st `  (
h `  ( i  +  1 ) ) ) ) ) ) )
10191, 100rabeqbidv 2859 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  { h  e.  ( ( v  X.  v )  ^m  (
1 ... n ) )  |  ( ( f `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( f `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( f `  ( 2nd `  ( h `  i
) ) )  =  ( f `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  =  {
h  e.  ( ( V  X.  V )  ^m  ( 1 ... n ) )  |  ( ( F `  ( 1st `  ( h `
 1 ) ) )  =  x  /\  ( F `  ( 2nd `  ( h `  n
) ) )  =  y  /\  A. i  e.  ( 1 ... (
n  -  1 ) ) ( F `  ( 2nd `  ( h `
 i ) ) )  =  ( F `
 ( 1st `  (
h `  ( i  +  1 ) ) ) ) ) } )
10214fveq2d 5612 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( dist `  r )  =  (
dist `  R )
)
103 imasval.e . . . . . . . . . . . . . . . 16  |-  E  =  ( dist `  R
)
104102, 103syl6eqr 2408 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( dist `  r )  =  E )
105104coeq1d 4927 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( ( dist `  r )  o.  g )  =  ( E  o.  g ) )
106105oveq2d 5961 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( RR* s  gsumg  ( ( dist `  r
)  o.  g ) )  =  ( RR* s  gsumg  ( E  o.  g
) ) )
107101, 106mpteq12dv 4179 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( g  e.  { h  e.  ( ( v  X.  v
)  ^m  ( 1 ... n ) )  |  ( ( f `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( f `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( f `  ( 2nd `  ( h `  i
) ) )  =  ( f `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR* s  gsumg  ( ( dist `  r
)  o.  g ) ) )  =  ( g  e.  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR* s  gsumg  ( E  o.  g
) ) ) )
108107rneqd 4988 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ran  ( g  e.  { h  e.  ( ( v  X.  v )  ^m  (
1 ... n ) )  |  ( ( f `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( f `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( f `  ( 2nd `  ( h `  i
) ) )  =  ( f `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR* s  gsumg  ( ( dist `  r
)  o.  g ) ) )  =  ran  ( g  e.  {
h  e.  ( ( V  X.  V )  ^m  ( 1 ... n ) )  |  ( ( F `  ( 1st `  ( h `
 1 ) ) )  =  x  /\  ( F `  ( 2nd `  ( h `  n
) ) )  =  y  /\  A. i  e.  ( 1 ... (
n  -  1 ) ) ( F `  ( 2nd `  ( h `
 i ) ) )  =  ( F `
 ( 1st `  (
h `  ( i  +  1 ) ) ) ) ) } 
|->  ( RR* s  gsumg  ( E  o.  g ) ) ) )
109108iuneq2d 4011 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  U_ n  e.  NN  ran  ( g  e.  { h  e.  ( ( v  X.  v )  ^m  (
1 ... n ) )  |  ( ( f `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( f `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( f `  ( 2nd `  ( h `  i
) ) )  =  ( f `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR* s  gsumg  ( ( dist `  r
)  o.  g ) ) )  =  U_ n  e.  NN  ran  ( g  e.  {
h  e.  ( ( V  X.  V )  ^m  ( 1 ... n ) )  |  ( ( F `  ( 1st `  ( h `
 1 ) ) )  =  x  /\  ( F `  ( 2nd `  ( h `  n
) ) )  =  y  /\  A. i  e.  ( 1 ... (
n  -  1 ) ) ( F `  ( 2nd `  ( h `
 i ) ) )  =  ( F `
 ( 1st `  (
h `  ( i  +  1 ) ) ) ) ) } 
|->  ( RR* s  gsumg  ( E  o.  g ) ) ) )
110109supeq1d 7289 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  sup ( U_ n  e.  NN  ran  ( g  e.  {
h  e.  ( ( v  X.  v )  ^m  ( 1 ... n ) )  |  ( ( f `  ( 1st `  ( h `
 1 ) ) )  =  x  /\  ( f `  ( 2nd `  ( h `  n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( f `  ( 2nd `  ( h `  i
) ) )  =  ( f `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR* s  gsumg  ( ( dist `  r
)  o.  g ) ) ) ,  RR* ,  `'  <  )  =  sup ( U_ n  e.  NN  ran  ( g  e.  {
h  e.  ( ( V  X.  V )  ^m  ( 1 ... n ) )  |  ( ( F `  ( 1st `  ( h `
 1 ) ) )  =  x  /\  ( F `  ( 2nd `  ( h `  n
) ) )  =  y  /\  A. i  e.  ( 1 ... (
n  -  1 ) ) ( F `  ( 2nd `  ( h `
 i ) ) )  =  ( F `
 ( 1st `  (
h `  ( i  +  1 ) ) ) ) ) } 
|->  ( RR* s  gsumg  ( E  o.  g ) ) ) ,  RR* ,  `'  <  ) )
11112, 12, 110mpt2eq123dv 5997 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( x  e.  ran  f ,  y  e.  ran  f  |->  sup ( U_ n  e.  NN  ran  ( g  e.  { h  e.  ( ( v  X.  v )  ^m  (
1 ... n ) )  |  ( ( f `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( f `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( f `  ( 2nd `  ( h `  i
) ) )  =  ( f `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR* s  gsumg  ( ( dist `  r
)  o.  g ) ) ) ,  RR* ,  `'  <  ) )  =  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR* s  gsumg  ( E  o.  g
) ) ) , 
RR* ,  `'  <  ) ) )
112 imasval.d . . . . . . . . 9  |-  ( ph  ->  D  =  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  {
h  e.  ( ( V  X.  V )  ^m  ( 1 ... n ) )  |  ( ( F `  ( 1st `  ( h `
 1 ) ) )  =  x  /\  ( F `  ( 2nd `  ( h `  n
) ) )  =  y  /\  A. i  e.  ( 1 ... (
n  -  1 ) ) ( F `  ( 2nd `  ( h `
 i ) ) )  =  ( F `
 ( 1st `  (
h `  ( i  +  1 ) ) ) ) ) } 
|->  ( RR* s  gsumg  ( E  o.  g ) ) ) ,  RR* ,  `'  <  ) ) )
113112ad2antrr 706 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  D  =  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR* s  gsumg  ( E  o.  g
) ) ) , 
RR* ,  `'  <  ) ) )
114111, 113eqtr4d 2393 . . . . . . 7  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( x  e.  ran  f ,  y  e.  ran  f  |->  sup ( U_ n  e.  NN  ran  ( g  e.  { h  e.  ( ( v  X.  v )  ^m  (
1 ... n ) )  |  ( ( f `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( f `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( f `  ( 2nd `  ( h `  i
) ) )  =  ( f `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR* s  gsumg  ( ( dist `  r
)  o.  g ) ) ) ,  RR* ,  `'  <  ) )  =  D )
115114opeq2d 3884 . . . . . 6  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  <. ( dist `  ndx ) ,  ( x  e.  ran  f ,  y  e.  ran  f  |->  sup ( U_ n  e.  NN  ran  ( g  e.  { h  e.  ( ( v  X.  v )  ^m  (
1 ... n ) )  |  ( ( f `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( f `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( f `  ( 2nd `  ( h `  i
) ) )  =  ( f `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR* s  gsumg  ( ( dist `  r
)  o.  g ) ) ) ,  RR* ,  `'  <  ) ) >.  =  <. ( dist `  ndx ) ,  D >. )
11679, 89, 115tpeq123d 3797 . . . . 5  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  { <. (TopSet ` 
ndx ) ,  ( ( TopOpen `  r ) qTop  f ) >. ,  <. ( le `  ndx ) ,  ( ( f  o.  ( le `  r ) )  o.  `' f ) >. ,  <. ( dist `  ndx ) ,  ( x  e.  ran  f ,  y  e.  ran  f  |->  sup ( U_ n  e.  NN  ran  ( g  e.  { h  e.  ( ( v  X.  v )  ^m  (
1 ... n ) )  |  ( ( f `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( f `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( f `  ( 2nd `  ( h `  i
) ) )  =  ( f `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR* s  gsumg  ( ( dist `  r
)  o.  g ) ) ) ,  RR* ,  `'  <  ) ) >. }  =  { <. (TopSet ` 
ndx ) ,  O >. ,  <. ( le `  ndx ) ,  .<_  >. ,  <. (
dist `  ndx ) ,  D >. } )
11771, 116uneq12d 3406 . . . 4  |-  ( ( ( ph  /\  (
f  =  F  /\  r  =  R )
)  /\  v  =  ( Base `  r )
)  ->  ( ( { <. ( Base `  ndx ) ,  ran  f >. ,  <. ( +g  `  ndx ) ,  U_ p  e.  v  U_ q  e.  v  { <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( +g  `  r
) q ) )
>. } >. ,  <. ( .r `  ndx ) , 
U_ p  e.  v 
U_ q  e.  v  { <. <. ( f `  p ) ,  ( f `  q )
>. ,  ( f `  ( p ( .r
`  r ) q ) ) >. } >. }  u.  { <. (Scalar ` 
ndx ) ,  (Scalar `  r ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  v  ( p  e.  (
Base `  (Scalar `  r
) ) ,  x  e.  { ( f `  q ) }  |->  ( f `  ( p ( .s `  r
) q ) ) ) >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  r ) qTop  f
) >. ,  <. ( le `  ndx ) ,  ( ( f  o.  ( le `  r
) )  o.  `' f ) >. ,  <. (
dist `  ndx ) ,  ( x  e.  ran  f ,  y  e.  ran  f  |->  sup ( U_ n  e.  NN  ran  ( g  e.  {
h  e.  ( ( v  X.  v )  ^m  ( 1 ... n ) )  |  ( ( f `  ( 1st `  ( h `
 1 ) ) )  =  x  /\  ( f `  ( 2nd `  ( h `  n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( f `  ( 2nd `  ( h `  i
) ) )  =  ( f `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR* s  gsumg  ( ( dist `  r
)  o.  g ) ) ) ,  RR* ,  `'  <  ) ) >. } )  =  ( ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+b  >. ,  <. ( .r `  ndx ) , 
.xb  >. }  u.  { <. (Scalar `  ndx ) ,  G >. ,  <. ( .s `  ndx ) , 
.(x)  >. } )  u. 
{ <. (TopSet `  ndx ) ,  O >. , 
<. ( le `  ndx ) ,  .<_  >. ,  <. (
dist `  ndx ) ,  D >. } ) )
1185, 117csbied 3199 . . 3  |-  ( (
ph  /\  ( f  =  F  /\  r  =  R ) )  ->  [_ ( Base `  r
)  /  v ]_ ( ( { <. (
Base `  ndx ) ,  ran  f >. ,  <. ( +g  `  ndx ) ,  U_ p  e.  v 
U_ q  e.  v  { <. <. ( f `  p ) ,  ( f `  q )
>. ,  ( f `  ( p ( +g  `  r ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  v 
U_ q  e.  v  { <. <. ( f `  p ) ,  ( f `  q )
>. ,  ( f `  ( p ( .r
`  r ) q ) ) >. } >. }  u.  { <. (Scalar ` 
ndx ) ,  (Scalar `  r ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  v  ( p  e.  (
Base `  (Scalar `  r
) ) ,  x  e.  { ( f `  q ) }  |->  ( f `  ( p ( .s `  r
) q ) ) ) >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  r ) qTop  f
) >. ,  <. ( le `  ndx ) ,  ( ( f  o.  ( le `  r
) )  o.  `' f ) >. ,  <. (
dist `  ndx ) ,  ( x  e.  ran  f ,  y  e.  ran  f  |->  sup ( U_ n  e.  NN  ran  ( g  e.  {
h  e.  ( ( v  X.  v )  ^m  ( 1 ... n ) )  |  ( ( f `  ( 1st `  ( h `
 1 ) ) )  =  x  /\  ( f `  ( 2nd `  ( h `  n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( f `  ( 2nd `  ( h `  i
) ) )  =  ( f `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR* s  gsumg  ( ( dist `  r
)  o.  g ) ) ) ,  RR* ,  `'  <  ) ) >. } )  =  ( ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+b  >. ,  <. ( .r `  ndx ) , 
.xb  >. }  u.  { <. (Scalar `  ndx ) ,  G >. ,  <. ( .s `  ndx ) , 
.(x)  >. } )  u. 
{ <. (TopSet `  ndx ) ,  O >. , 
<. ( le `  ndx ) ,  .<_  >. ,  <. (
dist `  ndx ) ,  D >. } ) )
119 fof 5534 . . . . 5  |-  ( F : V -onto-> B  ->  F : V --> B )
1208, 119syl 15 . . . 4  |-  ( ph  ->  F : V --> B )
121 fvex 5622 . . . . 5  |-  ( Base `  R )  e.  _V
12217, 121syl6eqel 2446 . . . 4  |-  ( ph  ->  V  e.  _V )
123 fex 5835 . . . 4  |-  ( ( F : V --> B  /\  V  e.  _V )  ->  F  e.  _V )
124120, 122, 123syl2anc 642 . . 3  |-  ( ph  ->  F  e.  _V )
125 imasval.r . . . 4  |-  ( ph  ->  R  e.  Z )
126 elex 2872 . . . 4  |-  ( R  e.  Z  ->  R  e.  _V )
127125, 126syl 15 . . 3  |-  ( ph  ->  R  e.  _V )
128 tpex 4601 . . . . . 6  |-  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+b  >. ,  <. ( .r `  ndx ) , 
.xb  >. }  e.  _V
129 prex 4298 . . . . . 6  |-  { <. (Scalar `  ndx ) ,  G >. ,  <. ( .s `  ndx ) ,  .(x)  >. }  e.  _V
130128, 129unex 4600 . . . . 5  |-  ( {
<. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. ( .r `  ndx ) ,  .xb  >. }  u.  { <. (Scalar `  ndx ) ,  G >. ,  <. ( .s `  ndx ) , 
.(x)  >. } )  e. 
_V
131 tpex 4601 . . . . 5  |-  { <. (TopSet `  ndx ) ,  O >. ,  <. ( le `  ndx ) ,  .<_  >. ,  <. (
dist `  ndx ) ,  D >. }  e.  _V
132130, 131unex 4600 . . . 4  |-  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. ( .r `  ndx ) ,  .xb  >. }  u.  { <. (Scalar `  ndx ) ,  G >. ,  <. ( .s `  ndx ) , 
.(x)  >. } )  u. 
{ <. (TopSet `  ndx ) ,  O >. , 
<. ( le `  ndx ) ,  .<_  >. ,  <. (
dist `  ndx ) ,  D >. } )  e. 
_V
133132a1i 10 . . 3  |-  ( ph  ->  ( ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+b  >. ,  <. ( .r `  ndx ) , 
.xb  >. }  u.  { <. (Scalar `  ndx ) ,  G >. ,  <. ( .s `  ndx ) , 
.(x)  >. } )  u. 
{ <. (TopSet `  ndx ) ,  O >. , 
<. ( le `  ndx ) ,  .<_  >. ,  <. (
dist `  ndx ) ,  D >. } )  e. 
_V )
1343, 118, 124, 127, 133ovmpt2d 6062 . 2  |-  ( ph  ->  ( F  "s  R )  =  ( ( {
<. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. ( .r `  ndx ) ,  .xb  >. }  u.  { <. (Scalar `  ndx ) ,  G >. ,  <. ( .s `  ndx ) , 
.(x)  >. } )  u. 
{ <. (TopSet `  ndx ) ,  O >. , 
<. ( le `  ndx ) ,  .<_  >. ,  <. (
dist `  ndx ) ,  D >. } ) )
1351, 134eqtrd 2390 1  |-  ( ph  ->  U  =  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. ( .r `  ndx ) ,  .xb  >. }  u.  { <. (Scalar `  ndx ) ,  G >. ,  <. ( .s `  ndx ) , 
.(x)  >. } )  u. 
{ <. (TopSet `  ndx ) ,  O >. , 
<. ( le `  ndx ) ,  .<_  >. ,  <. (
dist `  ndx ) ,  D >. } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710   A.wral 2619   {crab 2623   _Vcvv 2864   [_csb 3157    u. cun 3226   {csn 3716   {cpr 3717   {ctp 3718   <.cop 3719   U_ciun 3986    e. cmpt 4158    X. cxp 4769   `'ccnv 4770   ran crn 4772    o. ccom 4775   -->wf 5333   -onto->wfo 5335   ` cfv 5337  (class class class)co 5945    e. cmpt2 5947   1stc1st 6207   2ndc2nd 6208    ^m cmap 6860   supcsup 7283   1c1 8828    + caddc 8830   RR*cxr 8956    < clt 8957    - cmin 9127   NNcn 9836   ...cfz 10874   ndxcnx 13242   Basecbs 13245   +g cplusg 13305   .rcmulr 13306  Scalarcsca 13308   .scvsca 13309  TopSetcts 13311   lecple 13312   distcds 13314   TopOpenctopn 13425   RR* scxrs 13498    gsumg cgsu 13500   qTop cqtop 13505    "s cimas 13506
This theorem is referenced by:  imasbas  13514  imasds  13515  imasplusg  13519  imasmulr  13520  imassca  13521  imasvsca  13522  imastset  13523  imasle  13524
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pr 4295  ax-un 4594
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-id 4391  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-sup 7284  df-imas 13510
  Copyright terms: Public domain W3C validator