MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasvscafn Structured version   Unicode version

Theorem imasvscafn 13767
Description: The image structure's scalar multiplication is a function. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
imasvscaf.u  |-  ( ph  ->  U  =  ( F 
"s  R ) )
imasvscaf.v  |-  ( ph  ->  V  =  ( Base `  R ) )
imasvscaf.f  |-  ( ph  ->  F : V -onto-> B
)
imasvscaf.r  |-  ( ph  ->  R  e.  Z )
imasvscaf.g  |-  G  =  (Scalar `  R )
imasvscaf.k  |-  K  =  ( Base `  G
)
imasvscaf.q  |-  .x.  =  ( .s `  R )
imasvscaf.s  |-  .xb  =  ( .s `  U )
imasvscaf.e  |-  ( (
ph  /\  ( p  e.  K  /\  a  e.  V  /\  q  e.  V ) )  -> 
( ( F `  a )  =  ( F `  q )  ->  ( F `  ( p  .x.  a ) )  =  ( F `
 ( p  .x.  q ) ) ) )
Assertion
Ref Expression
imasvscafn  |-  ( ph  -> 
.xb  Fn  ( K  X.  B ) )
Distinct variable groups:    p, a,
q, F    K, a, p, q    ph, a, p, q    B, p, q    R, p, q    .x. , p, q    .xb , a, p, q    V, a, p, q
Allowed substitution hints:    B( a)    R( a)    .x. ( a)    U( q, p, a)    G( q, p, a)    Z( q, p, a)

Proof of Theorem imasvscafn
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2438 . . . . . . . 8  |-  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) )  =  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) )
2 fvex 5745 . . . . . . . 8  |-  ( F `
 ( p  .x.  q ) )  e. 
_V
31, 2fnmpt2i 6423 . . . . . . 7  |-  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) )  Fn  ( K  X.  { ( F `
 q ) } )
4 fnrel 5546 . . . . . . 7  |-  ( ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  Fn  ( K  X.  { ( F `
 q ) } )  ->  Rel  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) ) )
53, 4ax-mp 5 . . . . . 6  |-  Rel  (
p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )
65rgenw 2775 . . . . 5  |-  A. q  e.  V  Rel  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) )
7 reliun 4998 . . . . 5  |-  ( Rel  U_ q  e.  V  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  <->  A. q  e.  V  Rel  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) ) )
86, 7mpbir 202 . . . 4  |-  Rel  U_ q  e.  V  ( p  e.  K ,  x  e. 
{ ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) )
9 imasvscaf.u . . . . . 6  |-  ( ph  ->  U  =  ( F 
"s  R ) )
10 imasvscaf.v . . . . . 6  |-  ( ph  ->  V  =  ( Base `  R ) )
11 imasvscaf.f . . . . . 6  |-  ( ph  ->  F : V -onto-> B
)
12 imasvscaf.r . . . . . 6  |-  ( ph  ->  R  e.  Z )
13 imasvscaf.g . . . . . 6  |-  G  =  (Scalar `  R )
14 imasvscaf.k . . . . . 6  |-  K  =  ( Base `  G
)
15 imasvscaf.q . . . . . 6  |-  .x.  =  ( .s `  R )
16 imasvscaf.s . . . . . 6  |-  .xb  =  ( .s `  U )
179, 10, 11, 12, 13, 14, 15, 16imasvsca 13751 . . . . 5  |-  ( ph  -> 
.xb  =  U_ q  e.  V  ( p  e.  K ,  x  e. 
{ ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) ) )
1817releqd 4964 . . . 4  |-  ( ph  ->  ( Rel  .xb  <->  Rel  U_ q  e.  V  ( p  e.  K ,  x  e. 
{ ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) ) ) )
198, 18mpbiri 226 . . 3  |-  ( ph  ->  Rel  .xb  )
20 dffn2 5595 . . . . . . . . . . . . 13  |-  ( ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  Fn  ( K  X.  { ( F `
 q ) } )  <->  ( p  e.  K ,  x  e. 
{ ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) ) : ( K  X.  { ( F `
 q ) } ) --> _V )
213, 20mpbi 201 . . . . . . . . . . . 12  |-  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) ) : ( K  X.  { ( F `
 q ) } ) --> _V
22 fssxp 5605 . . . . . . . . . . . 12  |-  ( ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) ) : ( K  X.  { ( F `  q ) } ) --> _V  ->  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  C_  (
( K  X.  {
( F `  q
) } )  X. 
_V ) )
2321, 22ax-mp 5 . . . . . . . . . . 11  |-  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) )  C_  ( ( K  X.  { ( F `
 q ) } )  X.  _V )
24 fof 5656 . . . . . . . . . . . . . . 15  |-  ( F : V -onto-> B  ->  F : V --> B )
2511, 24syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  F : V --> B )
2625ffvelrnda 5873 . . . . . . . . . . . . 13  |-  ( (
ph  /\  q  e.  V )  ->  ( F `  q )  e.  B )
2726snssd 3945 . . . . . . . . . . . 12  |-  ( (
ph  /\  q  e.  V )  ->  { ( F `  q ) }  C_  B )
28 xpss2 4988 . . . . . . . . . . . 12  |-  ( { ( F `  q
) }  C_  B  ->  ( K  X.  {
( F `  q
) } )  C_  ( K  X.  B
) )
29 xpss1 4987 . . . . . . . . . . . 12  |-  ( ( K  X.  { ( F `  q ) } )  C_  ( K  X.  B )  -> 
( ( K  X.  { ( F `  q ) } )  X.  _V )  C_  ( ( K  X.  B )  X.  _V ) )
3027, 28, 293syl 19 . . . . . . . . . . 11  |-  ( (
ph  /\  q  e.  V )  ->  (
( K  X.  {
( F `  q
) } )  X. 
_V )  C_  (
( K  X.  B
)  X.  _V )
)
3123, 30syl5ss 3361 . . . . . . . . . 10  |-  ( (
ph  /\  q  e.  V )  ->  (
p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  C_  (
( K  X.  B
)  X.  _V )
)
3231ralrimiva 2791 . . . . . . . . 9  |-  ( ph  ->  A. q  e.  V  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  C_  (
( K  X.  B
)  X.  _V )
)
33 iunss 4134 . . . . . . . . 9  |-  ( U_ q  e.  V  (
p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  C_  (
( K  X.  B
)  X.  _V )  <->  A. q  e.  V  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  C_  (
( K  X.  B
)  X.  _V )
)
3432, 33sylibr 205 . . . . . . . 8  |-  ( ph  ->  U_ q  e.  V  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  C_  (
( K  X.  B
)  X.  _V )
)
3517, 34eqsstrd 3384 . . . . . . 7  |-  ( ph  -> 
.xb  C_  ( ( K  X.  B )  X. 
_V ) )
36 dmss 5072 . . . . . . 7  |-  (  .xb  C_  ( ( K  X.  B )  X.  _V )  ->  dom  .xb  C_  dom  ( ( K  X.  B )  X.  _V ) )
3735, 36syl 16 . . . . . 6  |-  ( ph  ->  dom  .xb  C_  dom  (
( K  X.  B
)  X.  _V )
)
38 vn0 3637 . . . . . . 7  |-  _V  =/=  (/)
39 dmxp 5091 . . . . . . 7  |-  ( _V  =/=  (/)  ->  dom  ( ( K  X.  B )  X.  _V )  =  ( K  X.  B
) )
4038, 39ax-mp 5 . . . . . 6  |-  dom  (
( K  X.  B
)  X.  _V )  =  ( K  X.  B )
4137, 40syl6sseq 3396 . . . . 5  |-  ( ph  ->  dom  .xb  C_  ( K  X.  B ) )
42 forn 5659 . . . . . . 7  |-  ( F : V -onto-> B  ->  ran  F  =  B )
4311, 42syl 16 . . . . . 6  |-  ( ph  ->  ran  F  =  B )
4443xpeq2d 4905 . . . . 5  |-  ( ph  ->  ( K  X.  ran  F )  =  ( K  X.  B ) )
4541, 44sseqtr4d 3387 . . . 4  |-  ( ph  ->  dom  .xb  C_  ( K  X.  ran  F ) )
46 df-br 4216 . . . . . . . . . 10  |-  ( <.
p ,  ( F `
 a ) >.  .xb  w  <->  <. <. p ,  ( F `  a )
>. ,  w >.  e. 
.xb  )
4717eleq2d 2505 . . . . . . . . . . . 12  |-  ( ph  ->  ( <. <. p ,  ( F `  a )
>. ,  w >.  e. 
.xb 
<-> 
<. <. p ,  ( F `  a )
>. ,  w >.  e. 
U_ q  e.  V  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) ) ) )
4847adantr 453 . . . . . . . . . . 11  |-  ( (
ph  /\  ( p  e.  K  /\  a  e.  V ) )  -> 
( <. <. p ,  ( F `  a )
>. ,  w >.  e. 
.xb 
<-> 
<. <. p ,  ( F `  a )
>. ,  w >.  e. 
U_ q  e.  V  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) ) ) )
49 eliun 4099 . . . . . . . . . . . 12  |-  ( <. <. p ,  ( F `
 a ) >. ,  w >.  e.  U_ q  e.  V  ( p  e.  K ,  x  e. 
{ ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) )  <->  E. q  e.  V  <. <. p ,  ( F `  a )
>. ,  w >.  e.  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) ) )
50 df-3an 939 . . . . . . . . . . . . . . 15  |-  ( ( p  e.  K  /\  a  e.  V  /\  q  e.  V )  <->  ( ( p  e.  K  /\  a  e.  V
)  /\  q  e.  V ) )
511mpt2fun 6175 . . . . . . . . . . . . . . . . . . . 20  |-  Fun  (
p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )
52 funopfv 5769 . . . . . . . . . . . . . . . . . . . 20  |-  ( Fun  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  ->  ( <. <. p ,  ( F `  a )
>. ,  w >.  e.  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  ->  (
( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) ) `  <. p ,  ( F `  a ) >. )  =  w ) )
5351, 52ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  ( <. <. p ,  ( F `
 a ) >. ,  w >.  e.  (
p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  ->  (
( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) ) `  <. p ,  ( F `  a ) >. )  =  w )
54 df-ov 6087 . . . . . . . . . . . . . . . . . . . 20  |-  ( p ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) ) ( F `
 a ) )  =  ( ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) ) `  <. p ,  ( F `  a ) >. )
55 opex 4430 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  <. p ,  ( F `  a ) >.  e.  _V
56 vex 2961 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  w  e. 
_V
5755, 56opeldm 5076 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( <. <. p ,  ( F `
 a ) >. ,  w >.  e.  (
p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  ->  <. p ,  ( F `  a ) >.  e.  dom  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) ) )
581, 2dmmpt2 6424 . . . . . . . . . . . . . . . . . . . . . . 23  |-  dom  (
p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  =  ( K  X.  { ( F `  q ) } )
5957, 58syl6eleq 2528 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( <. <. p ,  ( F `
 a ) >. ,  w >.  e.  (
p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  ->  <. p ,  ( F `  a ) >.  e.  ( K  X.  { ( F `  q ) } ) )
60 opelxp 4911 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( <.
p ,  ( F `
 a ) >.  e.  ( K  X.  {
( F `  q
) } )  <->  ( p  e.  K  /\  ( F `  a )  e.  { ( F `  q ) } ) )
6159, 60sylib 190 . . . . . . . . . . . . . . . . . . . . 21  |-  ( <. <. p ,  ( F `
 a ) >. ,  w >.  e.  (
p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  ->  (
p  e.  K  /\  ( F `  a )  e.  { ( F `
 q ) } ) )
62 oveq1 6091 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  =  p  ->  (
z  .x.  q )  =  ( p  .x.  q ) )
6362fveq2d 5735 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  =  p  ->  ( F `  ( z  .x.  q ) )  =  ( F `  (
p  .x.  q )
) )
64 eqidd 2439 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  ( F `  a )  ->  ( F `  ( p  .x.  q ) )  =  ( F `  (
p  .x.  q )
) )
6563equcoms 1694 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( p  =  z  ->  ( F `  ( z  .x.  q ) )  =  ( F `  (
p  .x.  q )
) )
6665eqcomd 2443 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( p  =  z  ->  ( F `  ( p  .x.  q ) )  =  ( F `  (
z  .x.  q )
) )
67 eqidd 2439 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  y  ->  ( F `  ( z  .x.  q ) )  =  ( F `  (
z  .x.  q )
) )
6866, 67cbvmpt2v 6155 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) )  =  ( z  e.  K ,  y  e.  { ( F `
 q ) } 
|->  ( F `  (
z  .x.  q )
) )
6963, 64, 68, 2ovmpt2 6212 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( p  e.  K  /\  ( F `  a )  e.  { ( F `
 q ) } )  ->  ( p
( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) ) ( F `
 a ) )  =  ( F `  ( p  .x.  q ) ) )
7061, 69syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( <. <. p ,  ( F `
 a ) >. ,  w >.  e.  (
p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  ->  (
p ( p  e.  K ,  x  e. 
{ ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) ) ( F `  a ) )  =  ( F `  (
p  .x.  q )
) )
7154, 70syl5eqr 2484 . . . . . . . . . . . . . . . . . . 19  |-  ( <. <. p ,  ( F `
 a ) >. ,  w >.  e.  (
p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  ->  (
( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) ) `  <. p ,  ( F `  a ) >. )  =  ( F `  ( p  .x.  q ) ) )
7253, 71eqtr3d 2472 . . . . . . . . . . . . . . . . . 18  |-  ( <. <. p ,  ( F `
 a ) >. ,  w >.  e.  (
p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  ->  w  =  ( F `  ( p  .x.  q ) ) )
7372adantl 454 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
p  e.  K  /\  a  e.  V  /\  q  e.  V )
)  /\  <. <. p ,  ( F `  a ) >. ,  w >.  e.  ( p  e.  K ,  x  e. 
{ ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) ) )  ->  w  =  ( F `  ( p  .x.  q ) ) )
7461simprd 451 . . . . . . . . . . . . . . . . . . 19  |-  ( <. <. p ,  ( F `
 a ) >. ,  w >.  e.  (
p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  ->  ( F `  a )  e.  { ( F `  q ) } )
75 elsni 3840 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F `  a )  e.  { ( F `
 q ) }  ->  ( F `  a )  =  ( F `  q ) )
7674, 75syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( <. <. p ,  ( F `
 a ) >. ,  w >.  e.  (
p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  ->  ( F `  a )  =  ( F `  q ) )
77 imasvscaf.e . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( p  e.  K  /\  a  e.  V  /\  q  e.  V ) )  -> 
( ( F `  a )  =  ( F `  q )  ->  ( F `  ( p  .x.  a ) )  =  ( F `
 ( p  .x.  q ) ) ) )
7877imp 420 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
p  e.  K  /\  a  e.  V  /\  q  e.  V )
)  /\  ( F `  a )  =  ( F `  q ) )  ->  ( F `  ( p  .x.  a
) )  =  ( F `  ( p 
.x.  q ) ) )
7976, 78sylan2 462 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
p  e.  K  /\  a  e.  V  /\  q  e.  V )
)  /\  <. <. p ,  ( F `  a ) >. ,  w >.  e.  ( p  e.  K ,  x  e. 
{ ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) ) )  ->  ( F `  ( p  .x.  a ) )  =  ( F `  (
p  .x.  q )
) )
8073, 79eqtr4d 2473 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
p  e.  K  /\  a  e.  V  /\  q  e.  V )
)  /\  <. <. p ,  ( F `  a ) >. ,  w >.  e.  ( p  e.  K ,  x  e. 
{ ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) ) )  ->  w  =  ( F `  ( p  .x.  a ) ) )
8180ex 425 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( p  e.  K  /\  a  e.  V  /\  q  e.  V ) )  -> 
( <. <. p ,  ( F `  a )
>. ,  w >.  e.  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  ->  w  =  ( F `  ( p  .x.  a ) ) ) )
8250, 81sylan2br 464 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
p  e.  K  /\  a  e.  V )  /\  q  e.  V
) )  ->  ( <. <. p ,  ( F `  a )
>. ,  w >.  e.  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  ->  w  =  ( F `  ( p  .x.  a ) ) ) )
8382anassrs 631 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
p  e.  K  /\  a  e.  V )
)  /\  q  e.  V )  ->  ( <. <. p ,  ( F `  a )
>. ,  w >.  e.  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  ->  w  =  ( F `  ( p  .x.  a ) ) ) )
8483rexlimdva 2832 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( p  e.  K  /\  a  e.  V ) )  -> 
( E. q  e.  V  <. <. p ,  ( F `  a )
>. ,  w >.  e.  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  ->  w  =  ( F `  ( p  .x.  a ) ) ) )
8549, 84syl5bi 210 . . . . . . . . . . 11  |-  ( (
ph  /\  ( p  e.  K  /\  a  e.  V ) )  -> 
( <. <. p ,  ( F `  a )
>. ,  w >.  e. 
U_ q  e.  V  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  ->  w  =  ( F `  ( p  .x.  a ) ) ) )
8648, 85sylbid 208 . . . . . . . . . 10  |-  ( (
ph  /\  ( p  e.  K  /\  a  e.  V ) )  -> 
( <. <. p ,  ( F `  a )
>. ,  w >.  e. 
.xb  ->  w  =  ( F `  ( p 
.x.  a ) ) ) )
8746, 86syl5bi 210 . . . . . . . . 9  |-  ( (
ph  /\  ( p  e.  K  /\  a  e.  V ) )  -> 
( <. p ,  ( F `  a )
>.  .xb  w  ->  w  =  ( F `  ( p  .x.  a ) ) ) )
8887alrimiv 1642 . . . . . . . 8  |-  ( (
ph  /\  ( p  e.  K  /\  a  e.  V ) )  ->  A. w ( <. p ,  ( F `  a ) >.  .xb  w  ->  w  =  ( F `
 ( p  .x.  a ) ) ) )
89 mo2icl 3115 . . . . . . . 8  |-  ( A. w ( <. p ,  ( F `  a ) >.  .xb  w  ->  w  =  ( F `
 ( p  .x.  a ) ) )  ->  E* w <. p ,  ( F `  a ) >.  .xb  w
)
9088, 89syl 16 . . . . . . 7  |-  ( (
ph  /\  ( p  e.  K  /\  a  e.  V ) )  ->  E* w <. p ,  ( F `  a )
>.  .xb  w )
9190ralrimivva 2800 . . . . . 6  |-  ( ph  ->  A. p  e.  K  A. a  e.  V  E* w <. p ,  ( F `  a )
>.  .xb  w )
92 fofn 5658 . . . . . . . 8  |-  ( F : V -onto-> B  ->  F  Fn  V )
93 opeq2 3987 . . . . . . . . . . 11  |-  ( y  =  ( F `  a )  ->  <. p ,  y >.  =  <. p ,  ( F `  a ) >. )
9493breq1d 4225 . . . . . . . . . 10  |-  ( y  =  ( F `  a )  ->  ( <. p ,  y >.  .xb  w  <->  <. p ,  ( F `  a )
>.  .xb  w ) )
9594mobidv 2318 . . . . . . . . 9  |-  ( y  =  ( F `  a )  ->  ( E* w <. p ,  y
>.  .xb  w  <->  E* w <. p ,  ( F `
 a ) >.  .xb  w ) )
9695ralrn 5876 . . . . . . . 8  |-  ( F  Fn  V  ->  ( A. y  e.  ran  F E* w <. p ,  y >.  .xb  w  <->  A. a  e.  V  E* w <. p ,  ( F `  a )
>.  .xb  w ) )
9711, 92, 963syl 19 . . . . . . 7  |-  ( ph  ->  ( A. y  e. 
ran  F E* w <. p ,  y >.  .xb  w  <->  A. a  e.  V  E* w <. p ,  ( F `  a )
>.  .xb  w ) )
9897ralbidv 2727 . . . . . 6  |-  ( ph  ->  ( A. p  e.  K  A. y  e. 
ran  F E* w <. p ,  y >.  .xb  w  <->  A. p  e.  K  A. a  e.  V  E* w <. p ,  ( F `  a )
>.  .xb  w ) )
9991, 98mpbird 225 . . . . 5  |-  ( ph  ->  A. p  e.  K  A. y  e.  ran  F E* w <. p ,  y >.  .xb  w
)
100 breq1 4218 . . . . . . 7  |-  ( x  =  <. p ,  y
>.  ->  ( x  .xb  w 
<-> 
<. p ,  y >.  .xb  w ) )
101100mobidv 2318 . . . . . 6  |-  ( x  =  <. p ,  y
>.  ->  ( E* w  x  .xb  w  <->  E* w <. p ,  y >.  .xb  w ) )
102101ralxp 5019 . . . . 5  |-  ( A. x  e.  ( K  X.  ran  F ) E* w  x  .xb  w  <->  A. p  e.  K  A. y  e.  ran  F E* w <. p ,  y
>.  .xb  w )
10399, 102sylibr 205 . . . 4  |-  ( ph  ->  A. x  e.  ( K  X.  ran  F
) E* w  x 
.xb  w )
104 ssralv 3409 . . . 4  |-  ( dom  .xb  C_  ( K  X.  ran  F )  ->  ( A. x  e.  ( K  X.  ran  F ) E* w  x  .xb  w  ->  A. x  e.  dom  .xb 
E* w  x  .xb  w ) )
10545, 103, 104sylc 59 . . 3  |-  ( ph  ->  A. x  e.  dom  .xb 
E* w  x  .xb  w )
106 dffun7 5482 . . 3  |-  ( Fun  .xb 
<->  ( Rel  .xb  /\  A. x  e.  dom  .xb  E* w  x  .xb  w ) )
10719, 105, 106sylanbrc 647 . 2  |-  ( ph  ->  Fun  .xb  )
108 eqimss2 3403 . . . . . . . . . . . . . . 15  |-  (  .xb  =  U_ q  e.  V  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  ->  U_ q  e.  V  ( p  e.  K ,  x  e. 
{ ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) )  C_  .xb  )
10917, 108syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  U_ q  e.  V  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  C_  .xb  )
110 iunss 4134 . . . . . . . . . . . . . 14  |-  ( U_ q  e.  V  (
p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  C_  .xb  <->  A. q  e.  V  ( p  e.  K ,  x  e. 
{ ( F `  q ) }  |->  ( F `  ( p 
.x.  q ) ) )  C_  .xb  )
111109, 110sylib 190 . . . . . . . . . . . . 13  |-  ( ph  ->  A. q  e.  V  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  C_  .xb  )
112111r19.21bi 2806 . . . . . . . . . . . 12  |-  ( (
ph  /\  q  e.  V )  ->  (
p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  C_  .xb  )
113112adantrl 698 . . . . . . . . . . 11  |-  ( (
ph  /\  ( p  e.  K  /\  q  e.  V ) )  -> 
( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  C_  .xb  )
114 dmss 5072 . . . . . . . . . . 11  |-  ( ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  C_  .xb  ->  dom  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  C_  dom  .xb  )
115113, 114syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  ( p  e.  K  /\  q  e.  V ) )  ->  dom  ( p  e.  K ,  x  e.  { ( F `  q ) }  |->  ( F `  ( p  .x.  q ) ) )  C_  dom  .xb  )
11658, 115syl5eqssr 3395 . . . . . . . . 9  |-  ( (
ph  /\  ( p  e.  K  /\  q  e.  V ) )  -> 
( K  X.  {
( F `  q
) } )  C_  dom  .xb  )
117 simprl 734 . . . . . . . . . 10  |-  ( (
ph  /\  ( p  e.  K  /\  q  e.  V ) )  ->  p  e.  K )
118 fvex 5745 . . . . . . . . . . 11  |-  ( F `
 q )  e. 
_V
119118snid 3843 . . . . . . . . . 10  |-  ( F `
 q )  e. 
{ ( F `  q ) }
120 opelxpi 4913 . . . . . . . . . 10  |-  ( ( p  e.  K  /\  ( F `  q )  e.  { ( F `
 q ) } )  ->  <. p ,  ( F `  q
) >.  e.  ( K  X.  { ( F `
 q ) } ) )
121117, 119, 120sylancl 645 . . . . . . . . 9  |-  ( (
ph  /\  ( p  e.  K  /\  q  e.  V ) )  ->  <. p ,  ( F `
 q ) >.  e.  ( K  X.  {
( F `  q
) } ) )
122116, 121sseldd 3351 . . . . . . . 8  |-  ( (
ph  /\  ( p  e.  K  /\  q  e.  V ) )  ->  <. p ,  ( F `
 q ) >.  e.  dom  .xb  )
123122ralrimivva 2800 . . . . . . 7  |-  ( ph  ->  A. p  e.  K  A. q  e.  V  <. p ,  ( F `
 q ) >.  e.  dom  .xb  )
124 opeq2 3987 . . . . . . . . . . 11  |-  ( y  =  ( F `  q )  ->  <. p ,  y >.  =  <. p ,  ( F `  q ) >. )
125124eleq1d 2504 . . . . . . . . . 10  |-  ( y  =  ( F `  q )  ->  ( <. p ,  y >.  e.  dom  .xb  <->  <. p ,  ( F `  q )
>.  e.  dom  .xb  )
)
126125ralrn 5876 . . . . . . . . 9  |-  ( F  Fn  V  ->  ( A. y  e.  ran  F
<. p ,  y >.  e.  dom  .xb  <->  A. q  e.  V  <. p ,  ( F `
 q ) >.  e.  dom  .xb  ) )
12711, 92, 1263syl 19 . . . . . . . 8  |-  ( ph  ->  ( A. y  e. 
ran  F <. p ,  y >.  e.  dom  .xb  <->  A. q  e.  V  <. p ,  ( F `  q ) >.  e.  dom  .xb  ) )
128127ralbidv 2727 . . . . . . 7  |-  ( ph  ->  ( A. p  e.  K  A. y  e. 
ran  F <. p ,  y >.  e.  dom  .xb  <->  A. p  e.  K  A. q  e.  V  <. p ,  ( F `  q ) >.  e.  dom  .xb  ) )
129123, 128mpbird 225 . . . . . 6  |-  ( ph  ->  A. p  e.  K  A. y  e.  ran  F
<. p ,  y >.  e.  dom  .xb  )
130 eleq1 2498 . . . . . . 7  |-  ( x  =  <. p ,  y
>.  ->  ( x  e. 
dom  .xb  <->  <. p ,  y
>.  e.  dom  .xb  )
)
131130ralxp 5019 . . . . . 6  |-  ( A. x  e.  ( K  X.  ran  F ) x  e.  dom  .xb  <->  A. p  e.  K  A. y  e.  ran  F <. p ,  y >.  e.  dom  .xb  )
132129, 131sylibr 205 . . . . 5  |-  ( ph  ->  A. x  e.  ( K  X.  ran  F
) x  e.  dom  .xb  )
133 dfss3 3340 . . . . 5  |-  ( ( K  X.  ran  F
)  C_  dom  .xb  <->  A. x  e.  ( K  X.  ran  F ) x  e.  dom  .xb  )
134132, 133sylibr 205 . . . 4  |-  ( ph  ->  ( K  X.  ran  F )  C_  dom  .xb  )
13544, 134eqsstr3d 3385 . . 3  |-  ( ph  ->  ( K  X.  B
)  C_  dom  .xb  )
13641, 135eqssd 3367 . 2  |-  ( ph  ->  dom  .xb  =  ( K  X.  B ) )
137 df-fn 5460 . 2  |-  (  .xb  Fn  ( K  X.  B
)  <->  ( Fun  .xb  /\  dom  .xb  =  ( K  X.  B ) ) )
138107, 136, 137sylanbrc 647 1  |-  ( ph  -> 
.xb  Fn  ( K  X.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937   A.wal 1550    = wceq 1653    e. wcel 1726   E*wmo 2284    =/= wne 2601   A.wral 2707   E.wrex 2708   _Vcvv 2958    C_ wss 3322   (/)c0 3630   {csn 3816   <.cop 3819   U_ciun 4095   class class class wbr 4215    X. cxp 4879   dom cdm 4881   ran crn 4882   Rel wrel 4886   Fun wfun 5451    Fn wfn 5452   -->wf 5453   -onto->wfo 5455   ` cfv 5457  (class class class)co 6084    e. cmpt2 6086   Basecbs 13474  Scalarcsca 13537   .scvsca 13538    "s cimas 13735
This theorem is referenced by:  imasvscaval  13768  imasvscaf  13769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-oadd 6731  df-er 6908  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-sup 7449  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-nn 10006  df-2 10063  df-3 10064  df-4 10065  df-5 10066  df-6 10067  df-7 10068  df-8 10069  df-9 10070  df-10 10071  df-n0 10227  df-z 10288  df-dec 10388  df-uz 10494  df-fz 11049  df-struct 13476  df-ndx 13477  df-slot 13478  df-base 13479  df-plusg 13547  df-mulr 13548  df-sca 13550  df-vsca 13551  df-tset 13553  df-ple 13554  df-ds 13556  df-imas 13739
  Copyright terms: Public domain W3C validator