MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaundir Unicode version

Theorem imaundir 5244
Description: The image of a union. (Contributed by Jeff Hoffman, 17-Feb-2008.)
Assertion
Ref Expression
imaundir  |-  ( ( A  u.  B )
" C )  =  ( ( A " C )  u.  ( B " C ) )

Proof of Theorem imaundir
StepHypRef Expression
1 df-ima 4850 . . 3  |-  ( ( A  u.  B )
" C )  =  ran  ( ( A  u.  B )  |`  C )
2 resundir 5120 . . . 4  |-  ( ( A  u.  B )  |`  C )  =  ( ( A  |`  C )  u.  ( B  |`  C ) )
32rneqi 5055 . . 3  |-  ran  (
( A  u.  B
)  |`  C )  =  ran  ( ( A  |`  C )  u.  ( B  |`  C ) )
4 rnun 5239 . . 3  |-  ran  (
( A  |`  C )  u.  ( B  |`  C ) )  =  ( ran  ( A  |`  C )  u.  ran  ( B  |`  C ) )
51, 3, 43eqtri 2428 . 2  |-  ( ( A  u.  B )
" C )  =  ( ran  ( A  |`  C )  u.  ran  ( B  |`  C ) )
6 df-ima 4850 . . 3  |-  ( A
" C )  =  ran  ( A  |`  C )
7 df-ima 4850 . . 3  |-  ( B
" C )  =  ran  ( B  |`  C )
86, 7uneq12i 3459 . 2  |-  ( ( A " C )  u.  ( B " C ) )  =  ( ran  ( A  |`  C )  u.  ran  ( B  |`  C ) )
95, 8eqtr4i 2427 1  |-  ( ( A  u.  B )
" C )  =  ( ( A " C )  u.  ( B " C ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1649    u. cun 3278   ran crn 4838    |` cres 4839   "cima 4840
This theorem is referenced by:  fvun  5752  fpwwe2lem13  8473  gsumzaddlem  15481  ustuqtop1  18224  mbfres2  19490  imadifxp  23991  funsnfsup  26633
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-rab 2675  df-v 2918  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-br 4173  df-opab 4227  df-cnv 4845  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850
  Copyright terms: Public domain W3C validator