Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imdistandaOLD Unicode version

Theorem imdistandaOLD 26337
Description: Distribution of implication with conjunction (deduction version with conjoined antecedent). (Moved into main set.mm as imdistanda 674 and may be deleted by mathbox owner, SF. --NM 20-Sep-2013.) (Contributed by Jeff Madsen, 19-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
imdistandaOLD.1  |-  ( (
ph  /\  ps )  ->  ( ch  ->  th )
)
Assertion
Ref Expression
imdistandaOLD  |-  ( ph  ->  ( ( ps  /\  ch )  ->  ( ps 
/\  th ) ) )

Proof of Theorem imdistandaOLD
StepHypRef Expression
1 imdistandaOLD.1 . 2  |-  ( (
ph  /\  ps )  ->  ( ch  ->  th )
)
21imdistanda 674 1  |-  ( ph  ->  ( ( ps  /\  ch )  ->  ( ps 
/\  th ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360
  Copyright terms: Public domain W3C validator