MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imdiv Unicode version

Theorem imdiv 11902
Description: Imaginary part of a division. Related to immul2 11901. (Contributed by Mario Carneiro, 20-Jun-2015.)
Assertion
Ref Expression
imdiv  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B  =/=  0 )  ->  (
Im `  ( A  /  B ) )  =  ( ( Im `  A )  /  B
) )

Proof of Theorem imdiv
StepHypRef Expression
1 ancom 438 . . . . 5  |-  ( ( ( B  e.  RR  /\  B  =/=  0 )  /\  A  e.  CC ) 
<->  ( A  e.  CC  /\  ( B  e.  RR  /\  B  =/=  0 ) ) )
2 3anass 940 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B  =/=  0 )  <->  ( A  e.  CC  /\  ( B  e.  RR  /\  B  =/=  0 ) ) )
31, 2bitr4i 244 . . . 4  |-  ( ( ( B  e.  RR  /\  B  =/=  0 )  /\  A  e.  CC ) 
<->  ( A  e.  CC  /\  B  e.  RR  /\  B  =/=  0 ) )
4 rereccl 9692 . . . . 5  |-  ( ( B  e.  RR  /\  B  =/=  0 )  -> 
( 1  /  B
)  e.  RR )
54anim1i 552 . . . 4  |-  ( ( ( B  e.  RR  /\  B  =/=  0 )  /\  A  e.  CC )  ->  ( ( 1  /  B )  e.  RR  /\  A  e.  CC ) )
63, 5sylbir 205 . . 3  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B  =/=  0 )  ->  (
( 1  /  B
)  e.  RR  /\  A  e.  CC )
)
7 immul2 11901 . . 3  |-  ( ( ( 1  /  B
)  e.  RR  /\  A  e.  CC )  ->  ( Im `  (
( 1  /  B
)  x.  A ) )  =  ( ( 1  /  B )  x.  ( Im `  A ) ) )
86, 7syl 16 . 2  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B  =/=  0 )  ->  (
Im `  ( (
1  /  B )  x.  A ) )  =  ( ( 1  /  B )  x.  ( Im `  A
) ) )
9 recn 9040 . . 3  |-  ( B  e.  RR  ->  B  e.  CC )
10 divrec2 9655 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B  =/=  0 )  ->  ( A  /  B )  =  ( ( 1  /  B )  x.  A
) )
1110fveq2d 5695 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B  =/=  0 )  ->  (
Im `  ( A  /  B ) )  =  ( Im `  (
( 1  /  B
)  x.  A ) ) )
129, 11syl3an2 1218 . 2  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B  =/=  0 )  ->  (
Im `  ( A  /  B ) )  =  ( Im `  (
( 1  /  B
)  x.  A ) ) )
13 imcl 11875 . . . . 5  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
1413recnd 9074 . . . 4  |-  ( A  e.  CC  ->  (
Im `  A )  e.  CC )
15143ad2ant1 978 . . 3  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B  =/=  0 )  ->  (
Im `  A )  e.  CC )
1693ad2ant2 979 . . 3  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B  =/=  0 )  ->  B  e.  CC )
17 simp3 959 . . 3  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B  =/=  0 )  ->  B  =/=  0 )
1815, 16, 17divrec2d 9754 . 2  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B  =/=  0 )  ->  (
( Im `  A
)  /  B )  =  ( ( 1  /  B )  x.  ( Im `  A
) ) )
198, 12, 183eqtr4d 2450 1  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B  =/=  0 )  ->  (
Im `  ( A  /  B ) )  =  ( ( Im `  A )  /  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2571   ` cfv 5417  (class class class)co 6044   CCcc 8948   RRcr 8949   0cc0 8950   1c1 8951    x. cmul 8955    / cdiv 9637   Imcim 11862
This theorem is referenced by:  imdivd  11994
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-resscn 9007  ax-1cn 9008  ax-icn 9009  ax-addcl 9010  ax-addrcl 9011  ax-mulcl 9012  ax-mulrcl 9013  ax-mulcom 9014  ax-addass 9015  ax-mulass 9016  ax-distr 9017  ax-i2m1 9018  ax-1ne0 9019  ax-1rid 9020  ax-rnegex 9021  ax-rrecex 9022  ax-cnre 9023  ax-pre-lttri 9024  ax-pre-lttrn 9025  ax-pre-ltadd 9026  ax-pre-mulgt0 9027
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rmo 2678  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-op 3787  df-uni 3980  df-br 4177  df-opab 4231  df-mpt 4232  df-id 4462  df-po 4467  df-so 4468  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-riota 6512  df-er 6868  df-en 7073  df-dom 7074  df-sdom 7075  df-pnf 9082  df-mnf 9083  df-xr 9084  df-ltxr 9085  df-le 9086  df-sub 9253  df-neg 9254  df-div 9638  df-2 10018  df-cj 11863  df-re 11864  df-im 11865
  Copyright terms: Public domain W3C validator