Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imfstnrelc Unicode version

Theorem imfstnrelc 25184
Description: The image under  1st of a class with no pairs inside. (Contributed by FL, 31-Aug-2009.)
Assertion
Ref Expression
imfstnrelc  |-  ( ( ( A  i^i  ( _V  X.  _V ) )  =  (/)  /\  A  =/=  (/) )  ->  ( 1st " A )  =  { (/)
} )

Proof of Theorem imfstnrelc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fo1st 6155 . . . . 5  |-  1st : _V -onto-> _V
2 fofun 5468 . . . . 5  |-  ( 1st
: _V -onto-> _V  ->  Fun 
1st )
31, 2ax-mp 8 . . . 4  |-  Fun  1st
4 ssv 3211 . . . . 5  |-  A  C_  _V
5 fofn 5469 . . . . . . 7  |-  ( 1st
: _V -onto-> _V  ->  1st 
Fn  _V )
61, 5ax-mp 8 . . . . . 6  |-  1st  Fn  _V
7 fndm 5359 . . . . . 6  |-  ( 1st 
Fn  _V  ->  dom  1st  =  _V )
86, 7ax-mp 8 . . . . 5  |-  dom  1st  =  _V
94, 8sseqtr4i 3224 . . . 4  |-  A  C_  dom  1st
103, 9pm3.2i 441 . . 3  |-  ( Fun 
1st  /\  A  C_  dom  1st )
11 dfimafn2 5588 . . 3  |-  ( ( Fun  1st  /\  A  C_  dom  1st )  ->  ( 1st " A )  = 
U_ x  e.  A  { ( 1st `  x
) } )
1210, 11mp1i 11 . 2  |-  ( ( ( A  i^i  ( _V  X.  _V ) )  =  (/)  /\  A  =/=  (/) )  ->  ( 1st " A )  =  U_ x  e.  A  {
( 1st `  x
) } )
13 1stval 6140 . . . . 5  |-  ( 1st `  x )  =  U. dom  { x }
14 disj 3508 . . . . . . . . . . . 12  |-  ( ( A  i^i  ( _V 
X.  _V ) )  =  (/) 
<-> 
A. x  e.  A  -.  x  e.  ( _V  X.  _V ) )
1514biimpi 186 . . . . . . . . . . 11  |-  ( ( A  i^i  ( _V 
X.  _V ) )  =  (/)  ->  A. x  e.  A  -.  x  e.  ( _V  X.  _V ) )
16 df-ral 2561 . . . . . . . . . . 11  |-  ( A. x  e.  A  -.  x  e.  ( _V  X.  _V )  <->  A. x
( x  e.  A  ->  -.  x  e.  ( _V  X.  _V )
) )
1715, 16sylib 188 . . . . . . . . . 10  |-  ( ( A  i^i  ( _V 
X.  _V ) )  =  (/)  ->  A. x ( x  e.  A  ->  -.  x  e.  ( _V  X.  _V ) ) )
181719.21bi 1806 . . . . . . . . 9  |-  ( ( A  i^i  ( _V 
X.  _V ) )  =  (/)  ->  ( x  e.  A  ->  -.  x  e.  ( _V  X.  _V ) ) )
1918adantr 451 . . . . . . . 8  |-  ( ( ( A  i^i  ( _V  X.  _V ) )  =  (/)  /\  A  =/=  (/) )  ->  ( x  e.  A  ->  -.  x  e.  ( _V  X.  _V ) ) )
2019imp 418 . . . . . . 7  |-  ( ( ( ( A  i^i  ( _V  X.  _V )
)  =  (/)  /\  A  =/=  (/) )  /\  x  e.  A )  ->  -.  x  e.  ( _V  X.  _V ) )
21 dmsnn0 5154 . . . . . . . . . 10  |-  ( x  e.  ( _V  X.  _V )  <->  dom  { x }  =/=  (/) )
2221bicomi 193 . . . . . . . . 9  |-  ( dom 
{ x }  =/=  (/)  <->  x  e.  ( _V  X.  _V ) )
2322necon1bbii 2511 . . . . . . . 8  |-  ( -.  x  e.  ( _V 
X.  _V )  <->  dom  { x }  =  (/) )
24 0ss 3496 . . . . . . . . 9  |-  (/)  C_  { (/) }
25 sseq1 3212 . . . . . . . . 9  |-  ( dom 
{ x }  =  (/) 
->  ( dom  { x }  C_  { (/) }  <->  (/)  C_  { (/) } ) )
2624, 25mpbiri 224 . . . . . . . 8  |-  ( dom 
{ x }  =  (/) 
->  dom  { x }  C_ 
{ (/) } )
2723, 26sylbi 187 . . . . . . 7  |-  ( -.  x  e.  ( _V 
X.  _V )  ->  dom  { x }  C_  { (/) } )
2820, 27syl 15 . . . . . 6  |-  ( ( ( ( A  i^i  ( _V  X.  _V )
)  =  (/)  /\  A  =/=  (/) )  /\  x  e.  A )  ->  dom  { x }  C_  { (/) } )
29 uni0b 3868 . . . . . 6  |-  ( U. dom  { x }  =  (/)  <->  dom 
{ x }  C_  {
(/) } )
3028, 29sylibr 203 . . . . 5  |-  ( ( ( ( A  i^i  ( _V  X.  _V )
)  =  (/)  /\  A  =/=  (/) )  /\  x  e.  A )  ->  U. dom  { x }  =  (/) )
3113, 30syl5eq 2340 . . . 4  |-  ( ( ( ( A  i^i  ( _V  X.  _V )
)  =  (/)  /\  A  =/=  (/) )  /\  x  e.  A )  ->  ( 1st `  x )  =  (/) )
3231sneqd 3666 . . 3  |-  ( ( ( ( A  i^i  ( _V  X.  _V )
)  =  (/)  /\  A  =/=  (/) )  /\  x  e.  A )  ->  { ( 1st `  x ) }  =  { (/) } )
3332iuneq2dv 3942 . 2  |-  ( ( ( A  i^i  ( _V  X.  _V ) )  =  (/)  /\  A  =/=  (/) )  ->  U_ x  e.  A  { ( 1st `  x ) }  =  U_ x  e.  A  { (/) } )
34 iunconst 3929 . . 3  |-  ( A  =/=  (/)  ->  U_ x  e.  A  { (/) }  =  { (/) } )
3534adantl 452 . 2  |-  ( ( ( A  i^i  ( _V  X.  _V ) )  =  (/)  /\  A  =/=  (/) )  ->  U_ x  e.  A  { (/) }  =  { (/) } )
3612, 33, 353eqtrd 2332 1  |-  ( ( ( A  i^i  ( _V  X.  _V ) )  =  (/)  /\  A  =/=  (/) )  ->  ( 1st " A )  =  { (/)
} )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358   A.wal 1530    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   _Vcvv 2801    i^i cin 3164    C_ wss 3165   (/)c0 3468   {csn 3653   U.cuni 3843   U_ciun 3921    X. cxp 4703   dom cdm 4705   "cima 4708   Fun wfun 5265    Fn wfn 5266   -onto->wfo 5269   ` cfv 5271   1stc1st 6136
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-fo 5277  df-fv 5279  df-1st 6138
  Copyright terms: Public domain W3C validator