MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imori Unicode version

Theorem imori 402
Description: Infer disjunction from implication. (Contributed by NM, 12-Mar-2012.)
Hypothesis
Ref Expression
imori.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
imori  |-  ( -. 
ph  \/  ps )

Proof of Theorem imori
StepHypRef Expression
1 imori.1 . 2  |-  ( ph  ->  ps )
2 imor 401 . 2  |-  ( (
ph  ->  ps )  <->  ( -.  ph  \/  ps ) )
31, 2mpbi 199 1  |-  ( -. 
ph  \/  ps )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 357
This theorem is referenced by:  pm2.1  406  pm2.26  853  rb-ax1  1507  meran1  24850  meran2  24851  meran3  24852
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-or 359
  Copyright terms: Public domain W3C validator