MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imp44 Unicode version

Theorem imp44 579
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp4.1  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )
Assertion
Ref Expression
imp44  |-  ( (
ph  /\  ( ( ps  /\  ch )  /\  th ) )  ->  ta )

Proof of Theorem imp44
StepHypRef Expression
1 imp4.1 . . 3  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )
21imp4c 574 . 2  |-  ( ph  ->  ( ( ( ps 
/\  ch )  /\  th )  ->  ta ) )
32imp 418 1  |-  ( (
ph  /\  ( ( ps  /\  ch )  /\  th ) )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358
This theorem is referenced by:  imp511  585  rnelfm  17664  mdsymlem4  23002  mdsymlem5  23003  cvrat4  30254
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360
  Copyright terms: Public domain W3C validator