MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imp5g Structured version   Unicode version

Theorem imp5g 585
Description: An importation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
Hypothesis
Ref Expression
imp5.1  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ( ta  ->  et )
) ) ) )
Assertion
Ref Expression
imp5g  |-  ( (
ph  /\  ps )  ->  ( ( ( ch 
/\  th )  /\  ta )  ->  et ) )

Proof of Theorem imp5g
StepHypRef Expression
1 imp5.1 . . 3  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ( ta  ->  et )
) ) ) )
21imp 420 . 2  |-  ( (
ph  /\  ps )  ->  ( ch  ->  ( th  ->  ( ta  ->  et ) ) ) )
32imp4c 576 1  |-  ( (
ph  /\  ps )  ->  ( ( ( ch 
/\  th )  /\  ta )  ->  et ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 179  df-an 362
  Copyright terms: Public domain W3C validator