Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imp5gOLD Unicode version

Theorem imp5gOLD 26308
Description: An importation inference. (Moved into main set.mm as imp5g 583 and may be deleted by mathbox owner, JGH. --NM 29-May-2014.) (Contributed by Jeff Hankins, 7-Jul-2009.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
imp5OLD.1  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ( ta  ->  et )
) ) ) )
Assertion
Ref Expression
imp5gOLD  |-  ( (
ph  /\  ps )  ->  ( ( ( ch 
/\  th )  /\  ta )  ->  et ) )

Proof of Theorem imp5gOLD
StepHypRef Expression
1 imp5OLD.1 . 2  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ( ta  ->  et )
) ) ) )
21imp5g 583 1  |-  ( (
ph  /\  ps )  ->  ( ( ( ch 
/\  th )  /\  ta )  ->  et ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360
  Copyright terms: Public domain W3C validator