Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imp5q Structured version   Unicode version

Theorem imp5q 26329
Description: A triple importation inference. (Contributed by Jeff Hankins, 8-Jul-2009.)
Hypothesis
Ref Expression
3imp5.1  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ( ta  ->  et )
) ) ) )
Assertion
Ref Expression
imp5q  |-  ( (
ph  /\  ps )  ->  ( ( ch  /\  th 
/\  ta )  ->  et ) )

Proof of Theorem imp5q
StepHypRef Expression
1 3imp5.1 . . 3  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ( ta  ->  et )
) ) ) )
21imp 420 . 2  |-  ( (
ph  /\  ps )  ->  ( ch  ->  ( th  ->  ( ta  ->  et ) ) ) )
323impd 1168 1  |-  ( (
ph  /\  ps )  ->  ( ( ch  /\  th 
/\  ta )  ->  et ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937
This theorem is referenced by:  elicc3  26334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 179  df-an 362  df-3an 939
  Copyright terms: Public domain W3C validator