MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  impac Unicode version

Theorem impac 604
Description: Importation with conjunction in consequent. (Contributed by NM, 9-Aug-1994.)
Hypothesis
Ref Expression
impac.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
impac  |-  ( (
ph  /\  ps )  ->  ( ch  /\  ps ) )

Proof of Theorem impac
StepHypRef Expression
1 impac.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
21ancrd 537 . 2  |-  ( ph  ->  ( ps  ->  ( ch  /\  ps ) ) )
32imp 418 1  |-  ( (
ph  /\  ps )  ->  ( ch  /\  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358
This theorem is referenced by:  imdistanri  672  zfrep6  5764  f1elima  5803  tfrlem5  6412  sltval2  24381
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360
  Copyright terms: Public domain W3C validator