Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  impbiddOLD Unicode version

Theorem impbiddOLD 26704
Description: Lemma for prter3 26750. (Moved to impbidd 181 in main set.mm and may be deleted by mathbox owner, RM. --NM 15-May-2013.) (Contributed by Rodolfo Medina, 12-Oct-2010.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
impbiddOLD.1  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
impbiddOLD.2  |-  ( ph  ->  ( ps  ->  ( th  ->  ch ) ) )
Assertion
Ref Expression
impbiddOLD  |-  ( ph  ->  ( ps  ->  ( ch 
<->  th ) ) )

Proof of Theorem impbiddOLD
StepHypRef Expression
1 impbiddOLD.1 . 2  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
2 impbiddOLD.2 . 2  |-  ( ph  ->  ( ps  ->  ( th  ->  ch ) ) )
31, 2impbidd 181 1  |-  ( ph  ->  ( ps  ->  ( ch 
<->  th ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177
  Copyright terms: Public domain W3C validator