MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imsdval Unicode version

Theorem imsdval 22135
Description: Value of the induced metric (distance function) of a normed complex vector space. Equation 1 of [Kreyszig] p. 59. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 27-Dec-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
imsdval.1  |-  X  =  ( BaseSet `  U )
imsdval.3  |-  M  =  ( -v `  U
)
imsdval.6  |-  N  =  ( normCV `  U )
imsdval.8  |-  D  =  ( IndMet `  U )
Assertion
Ref Expression
imsdval  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  =  ( N `  ( A M B ) ) )

Proof of Theorem imsdval
StepHypRef Expression
1 imsdval.3 . . . . . 6  |-  M  =  ( -v `  U
)
2 imsdval.6 . . . . . 6  |-  N  =  ( normCV `  U )
3 imsdval.8 . . . . . 6  |-  D  =  ( IndMet `  U )
41, 2, 3imsval 22134 . . . . 5  |-  ( U  e.  NrmCVec  ->  D  =  ( N  o.  M ) )
543ad2ant1 978 . . . 4  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  D  =  ( N  o.  M ) )
65fveq1d 5693 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( D `  <. A ,  B >. )  =  ( ( N  o.  M
) `  <. A ,  B >. ) )
7 imsdval.1 . . . . . 6  |-  X  =  ( BaseSet `  U )
87, 1nvmf 22084 . . . . 5  |-  ( U  e.  NrmCVec  ->  M : ( X  X.  X ) --> X )
9 opelxpi 4873 . . . . 5  |-  ( ( A  e.  X  /\  B  e.  X )  -> 
<. A ,  B >.  e.  ( X  X.  X
) )
10 fvco3 5763 . . . . 5  |-  ( ( M : ( X  X.  X ) --> X  /\  <. A ,  B >.  e.  ( X  X.  X ) )  -> 
( ( N  o.  M ) `  <. A ,  B >. )  =  ( N `  ( M `  <. A ,  B >. ) ) )
118, 9, 10syl2an 464 . . . 4  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( ( N  o.  M ) `  <. A ,  B >. )  =  ( N `
 ( M `  <. A ,  B >. ) ) )
12113impb 1149 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( N  o.  M
) `  <. A ,  B >. )  =  ( N `  ( M `
 <. A ,  B >. ) ) )
136, 12eqtrd 2440 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( D `  <. A ,  B >. )  =  ( N `  ( M `
 <. A ,  B >. ) ) )
14 df-ov 6047 . 2  |-  ( A D B )  =  ( D `  <. A ,  B >. )
15 df-ov 6047 . . 3  |-  ( A M B )  =  ( M `  <. A ,  B >. )
1615fveq2i 5694 . 2  |-  ( N `
 ( A M B ) )  =  ( N `  ( M `  <. A ,  B >. ) )
1713, 14, 163eqtr4g 2465 1  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  =  ( N `  ( A M B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   <.cop 3781    X. cxp 4839    o. ccom 4845   -->wf 5413   ` cfv 5417  (class class class)co 6044   NrmCVeccnv 22020   BaseSetcba 22022   -vcnsb 22025   normCVcnmcv 22026   IndMetcims 22027
This theorem is referenced by:  imsdval2  22136  nvnd  22137  nvelbl  22142  vacn  22147  smcnlem  22150  sspimsval  22196  blometi  22261  blocnilem  22262  ubthlem2  22330  minvecolem2  22334  minvecolem4  22339  minvecolem5  22340  minvecolem6  22341  h2hmetdval  22438  hhssmetdval  22735
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-resscn 9007  ax-1cn 9008  ax-icn 9009  ax-addcl 9010  ax-addrcl 9011  ax-mulcl 9012  ax-mulrcl 9013  ax-mulcom 9014  ax-addass 9015  ax-mulass 9016  ax-distr 9017  ax-i2m1 9018  ax-1ne0 9019  ax-1rid 9020  ax-rnegex 9021  ax-rrecex 9022  ax-cnre 9023  ax-pre-lttri 9024  ax-pre-lttrn 9025  ax-pre-ltadd 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-op 3787  df-uni 3980  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-id 4462  df-po 4467  df-so 4468  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-1st 6312  df-2nd 6313  df-riota 6512  df-er 6868  df-en 7073  df-dom 7074  df-sdom 7075  df-pnf 9082  df-mnf 9083  df-ltxr 9085  df-sub 9253  df-neg 9254  df-grpo 21736  df-gid 21737  df-ginv 21738  df-gdiv 21739  df-ablo 21827  df-vc 21982  df-nv 22028  df-va 22031  df-ba 22032  df-sm 22033  df-0v 22034  df-vs 22035  df-nmcv 22036  df-ims 22037
  Copyright terms: Public domain W3C validator