MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imsdval Structured version   Unicode version

Theorem imsdval 22209
Description: Value of the induced metric (distance function) of a normed complex vector space. Equation 1 of [Kreyszig] p. 59. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 27-Dec-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
imsdval.1  |-  X  =  ( BaseSet `  U )
imsdval.3  |-  M  =  ( -v `  U
)
imsdval.6  |-  N  =  ( normCV `  U )
imsdval.8  |-  D  =  ( IndMet `  U )
Assertion
Ref Expression
imsdval  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  =  ( N `  ( A M B ) ) )

Proof of Theorem imsdval
StepHypRef Expression
1 imsdval.3 . . . . . 6  |-  M  =  ( -v `  U
)
2 imsdval.6 . . . . . 6  |-  N  =  ( normCV `  U )
3 imsdval.8 . . . . . 6  |-  D  =  ( IndMet `  U )
41, 2, 3imsval 22208 . . . . 5  |-  ( U  e.  NrmCVec  ->  D  =  ( N  o.  M ) )
543ad2ant1 979 . . . 4  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  D  =  ( N  o.  M ) )
65fveq1d 5759 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( D `  <. A ,  B >. )  =  ( ( N  o.  M
) `  <. A ,  B >. ) )
7 imsdval.1 . . . . . 6  |-  X  =  ( BaseSet `  U )
87, 1nvmf 22158 . . . . 5  |-  ( U  e.  NrmCVec  ->  M : ( X  X.  X ) --> X )
9 opelxpi 4939 . . . . 5  |-  ( ( A  e.  X  /\  B  e.  X )  -> 
<. A ,  B >.  e.  ( X  X.  X
) )
10 fvco3 5829 . . . . 5  |-  ( ( M : ( X  X.  X ) --> X  /\  <. A ,  B >.  e.  ( X  X.  X ) )  -> 
( ( N  o.  M ) `  <. A ,  B >. )  =  ( N `  ( M `  <. A ,  B >. ) ) )
118, 9, 10syl2an 465 . . . 4  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( ( N  o.  M ) `  <. A ,  B >. )  =  ( N `
 ( M `  <. A ,  B >. ) ) )
12113impb 1150 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( N  o.  M
) `  <. A ,  B >. )  =  ( N `  ( M `
 <. A ,  B >. ) ) )
136, 12eqtrd 2474 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( D `  <. A ,  B >. )  =  ( N `  ( M `
 <. A ,  B >. ) ) )
14 df-ov 6113 . 2  |-  ( A D B )  =  ( D `  <. A ,  B >. )
15 df-ov 6113 . . 3  |-  ( A M B )  =  ( M `  <. A ,  B >. )
1615fveq2i 5760 . 2  |-  ( N `
 ( A M B ) )  =  ( N `  ( M `  <. A ,  B >. ) )
1713, 14, 163eqtr4g 2499 1  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  =  ( N `  ( A M B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1727   <.cop 3841    X. cxp 4905    o. ccom 4911   -->wf 5479   ` cfv 5483  (class class class)co 6110   NrmCVeccnv 22094   BaseSetcba 22096   -vcnsb 22099   normCVcnmcv 22100   IndMetcims 22101
This theorem is referenced by:  imsdval2  22210  nvnd  22211  nvelbl  22216  vacn  22221  smcnlem  22224  sspimsval  22270  blometi  22335  blocnilem  22336  ubthlem2  22404  minvecolem2  22408  minvecolem4  22413  minvecolem5  22414  minvecolem6  22415  h2hmetdval  22512  hhssmetdval  22809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-rep 4345  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730  ax-resscn 9078  ax-1cn 9079  ax-icn 9080  ax-addcl 9081  ax-addrcl 9082  ax-mulcl 9083  ax-mulrcl 9084  ax-mulcom 9085  ax-addass 9086  ax-mulass 9087  ax-distr 9088  ax-i2m1 9089  ax-1ne0 9090  ax-1rid 9091  ax-rnegex 9092  ax-rrecex 9093  ax-cnre 9094  ax-pre-lttri 9095  ax-pre-lttrn 9096  ax-pre-ltadd 9097
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2716  df-rex 2717  df-reu 2718  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-op 3847  df-uni 4040  df-iun 4119  df-br 4238  df-opab 4292  df-mpt 4293  df-id 4527  df-po 4532  df-so 4533  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-1st 6378  df-2nd 6379  df-riota 6578  df-er 6934  df-en 7139  df-dom 7140  df-sdom 7141  df-pnf 9153  df-mnf 9154  df-ltxr 9156  df-sub 9324  df-neg 9325  df-grpo 21810  df-gid 21811  df-ginv 21812  df-gdiv 21813  df-ablo 21901  df-vc 22056  df-nv 22102  df-va 22105  df-ba 22106  df-sm 22107  df-0v 22108  df-vs 22109  df-nmcv 22110  df-ims 22111
  Copyright terms: Public domain W3C validator