MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imsmetlem Unicode version

Theorem imsmetlem 21275
Description: Lemma for imsmet 21276. (Contributed by NM, 29-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
imsmetlem.1  |-  X  =  ( BaseSet `  U )
imsmetlem.2  |-  G  =  ( +v `  U
)
imsmetlem.7  |-  M  =  ( inv `  G
)
imsmetlem.4  |-  S  =  ( .s OLD `  U
)
imsmetlem.5  |-  Z  =  ( 0vec `  U
)
imsmetlem.6  |-  N  =  ( normCV `  U )
imsmetlem.8  |-  D  =  ( IndMet `  U )
imsmetlem.9  |-  U  e.  NrmCVec
Assertion
Ref Expression
imsmetlem  |-  D  e.  ( Met `  X
)

Proof of Theorem imsmetlem
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imsmetlem.1 . . 3  |-  X  =  ( BaseSet `  U )
2 fvex 5555 . . 3  |-  ( BaseSet `  U )  e.  _V
31, 2eqeltri 2366 . 2  |-  X  e. 
_V
4 imsmetlem.9 . . 3  |-  U  e.  NrmCVec
5 imsmetlem.8 . . . 4  |-  D  =  ( IndMet `  U )
61, 5imsdf 21274 . . 3  |-  ( U  e.  NrmCVec  ->  D : ( X  X.  X ) --> RR )
74, 6ax-mp 8 . 2  |-  D :
( X  X.  X
) --> RR
8 imsmetlem.2 . . . . . 6  |-  G  =  ( +v `  U
)
9 imsmetlem.4 . . . . . 6  |-  S  =  ( .s OLD `  U
)
10 imsmetlem.6 . . . . . 6  |-  N  =  ( normCV `  U )
111, 8, 9, 10, 5imsdval2 21272 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  x  e.  X  /\  y  e.  X )  ->  (
x D y )  =  ( N `  ( x G (
-u 1 S y ) ) ) )
124, 11mp3an1 1264 . . . 4  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( x D y )  =  ( N `
 ( x G ( -u 1 S y ) ) ) )
1312eqeq1d 2304 . . 3  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( ( x D y )  =  0  <-> 
( N `  (
x G ( -u
1 S y ) ) )  =  0 ) )
14 neg1cn 9829 . . . . . 6  |-  -u 1  e.  CC
151, 9nvscl 21200 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  -u 1  e.  CC  /\  y  e.  X )  ->  ( -u 1 S y )  e.  X )
164, 14, 15mp3an12 1267 . . . . 5  |-  ( y  e.  X  ->  ( -u 1 S y )  e.  X )
171, 8nvgcl 21192 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  x  e.  X  /\  ( -u 1 S y )  e.  X )  -> 
( x G (
-u 1 S y ) )  e.  X
)
184, 17mp3an1 1264 . . . . 5  |-  ( ( x  e.  X  /\  ( -u 1 S y )  e.  X )  ->  ( x G ( -u 1 S y ) )  e.  X )
1916, 18sylan2 460 . . . 4  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( x G (
-u 1 S y ) )  e.  X
)
20 imsmetlem.5 . . . . 5  |-  Z  =  ( 0vec `  U
)
211, 20, 10nvz 21251 . . . 4  |-  ( ( U  e.  NrmCVec  /\  (
x G ( -u
1 S y ) )  e.  X )  ->  ( ( N `
 ( x G ( -u 1 S y ) ) )  =  0  <->  ( x G ( -u 1 S y ) )  =  Z ) )
224, 19, 21sylancr 644 . . 3  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( ( N `  ( x G (
-u 1 S y ) ) )  =  0  <->  ( x G ( -u 1 S y ) )  =  Z ) )
231, 20nvzcl 21208 . . . . . . 7  |-  ( U  e.  NrmCVec  ->  Z  e.  X
)
244, 23ax-mp 8 . . . . . 6  |-  Z  e.  X
251, 8nvrcan 21197 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  (
( x G (
-u 1 S y ) )  e.  X  /\  Z  e.  X  /\  y  e.  X
) )  ->  (
( ( x G ( -u 1 S y ) ) G y )  =  ( Z G y )  <-> 
( x G (
-u 1 S y ) )  =  Z ) )
264, 25mpan 651 . . . . . 6  |-  ( ( ( x G (
-u 1 S y ) )  e.  X  /\  Z  e.  X  /\  y  e.  X
)  ->  ( (
( x G (
-u 1 S y ) ) G y )  =  ( Z G y )  <->  ( x G ( -u 1 S y ) )  =  Z ) )
2724, 26mp3an2 1265 . . . . 5  |-  ( ( ( x G (
-u 1 S y ) )  e.  X  /\  y  e.  X
)  ->  ( (
( x G (
-u 1 S y ) ) G y )  =  ( Z G y )  <->  ( x G ( -u 1 S y ) )  =  Z ) )
2819, 27sylancom 648 . . . 4  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( ( ( x G ( -u 1 S y ) ) G y )  =  ( Z G y )  <->  ( x G ( -u 1 S y ) )  =  Z ) )
29 simpl 443 . . . . . . 7  |-  ( ( x  e.  X  /\  y  e.  X )  ->  x  e.  X )
3016adantl 452 . . . . . . 7  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( -u 1 S y )  e.  X
)
31 simpr 447 . . . . . . 7  |-  ( ( x  e.  X  /\  y  e.  X )  ->  y  e.  X )
321, 8nvass 21194 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  (
x  e.  X  /\  ( -u 1 S y )  e.  X  /\  y  e.  X )
)  ->  ( (
x G ( -u
1 S y ) ) G y )  =  ( x G ( ( -u 1 S y ) G y ) ) )
334, 32mpan 651 . . . . . . 7  |-  ( ( x  e.  X  /\  ( -u 1 S y )  e.  X  /\  y  e.  X )  ->  ( ( x G ( -u 1 S y ) ) G y )  =  ( x G ( (
-u 1 S y ) G y ) ) )
3429, 30, 31, 33syl3anc 1182 . . . . . 6  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( ( x G ( -u 1 S y ) ) G y )  =  ( x G ( (
-u 1 S y ) G y ) ) )
351, 8, 9, 20nvlinv 21228 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  y  e.  X )  ->  (
( -u 1 S y ) G y )  =  Z )
364, 35mpan 651 . . . . . . . 8  |-  ( y  e.  X  ->  (
( -u 1 S y ) G y )  =  Z )
3736adantl 452 . . . . . . 7  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( ( -u 1 S y ) G y )  =  Z )
3837oveq2d 5890 . . . . . 6  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( x G ( ( -u 1 S y ) G y ) )  =  ( x G Z ) )
391, 8, 20nv0rid 21209 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  x  e.  X )  ->  (
x G Z )  =  x )
404, 39mpan 651 . . . . . . 7  |-  ( x  e.  X  ->  (
x G Z )  =  x )
4140adantr 451 . . . . . 6  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( x G Z )  =  x )
4234, 38, 413eqtrd 2332 . . . . 5  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( ( x G ( -u 1 S y ) ) G y )  =  x )
431, 8, 20nv0lid 21210 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  y  e.  X )  ->  ( Z G y )  =  y )
444, 43mpan 651 . . . . . 6  |-  ( y  e.  X  ->  ( Z G y )  =  y )
4544adantl 452 . . . . 5  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( Z G y )  =  y )
4642, 45eqeq12d 2310 . . . 4  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( ( ( x G ( -u 1 S y ) ) G y )  =  ( Z G y )  <->  x  =  y
) )
4728, 46bitr3d 246 . . 3  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( ( x G ( -u 1 S y ) )  =  Z  <->  x  =  y
) )
4813, 22, 473bitrd 270 . 2  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( ( x D y )  =  0  <-> 
x  =  y ) )
49 simpr 447 . . . . . . 7  |-  ( ( z  e.  X  /\  x  e.  X )  ->  x  e.  X )
501, 9nvscl 21200 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  -u 1  e.  CC  /\  z  e.  X )  ->  ( -u 1 S z )  e.  X )
514, 14, 50mp3an12 1267 . . . . . . . 8  |-  ( z  e.  X  ->  ( -u 1 S z )  e.  X )
5251adantr 451 . . . . . . 7  |-  ( ( z  e.  X  /\  x  e.  X )  ->  ( -u 1 S z )  e.  X
)
531, 8nvgcl 21192 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  x  e.  X  /\  ( -u 1 S z )  e.  X )  -> 
( x G (
-u 1 S z ) )  e.  X
)
544, 53mp3an1 1264 . . . . . . 7  |-  ( ( x  e.  X  /\  ( -u 1 S z )  e.  X )  ->  ( x G ( -u 1 S z ) )  e.  X )
5549, 52, 54syl2anc 642 . . . . . 6  |-  ( ( z  e.  X  /\  x  e.  X )  ->  ( x G (
-u 1 S z ) )  e.  X
)
56553adant3 975 . . . . 5  |-  ( ( z  e.  X  /\  x  e.  X  /\  y  e.  X )  ->  ( x G (
-u 1 S z ) )  e.  X
)
571, 8nvgcl 21192 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  z  e.  X  /\  ( -u 1 S y )  e.  X )  -> 
( z G (
-u 1 S y ) )  e.  X
)
584, 57mp3an1 1264 . . . . . . 7  |-  ( ( z  e.  X  /\  ( -u 1 S y )  e.  X )  ->  ( z G ( -u 1 S y ) )  e.  X )
5916, 58sylan2 460 . . . . . 6  |-  ( ( z  e.  X  /\  y  e.  X )  ->  ( z G (
-u 1 S y ) )  e.  X
)
60593adant2 974 . . . . 5  |-  ( ( z  e.  X  /\  x  e.  X  /\  y  e.  X )  ->  ( z G (
-u 1 S y ) )  e.  X
)
611, 8, 10nvtri 21252 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  (
x G ( -u
1 S z ) )  e.  X  /\  ( z G (
-u 1 S y ) )  e.  X
)  ->  ( N `  ( ( x G ( -u 1 S z ) ) G ( z G (
-u 1 S y ) ) ) )  <_  ( ( N `
 ( x G ( -u 1 S z ) ) )  +  ( N `  ( z G (
-u 1 S y ) ) ) ) )
624, 61mp3an1 1264 . . . . 5  |-  ( ( ( x G (
-u 1 S z ) )  e.  X  /\  ( z G (
-u 1 S y ) )  e.  X
)  ->  ( N `  ( ( x G ( -u 1 S z ) ) G ( z G (
-u 1 S y ) ) ) )  <_  ( ( N `
 ( x G ( -u 1 S z ) ) )  +  ( N `  ( z G (
-u 1 S y ) ) ) ) )
6356, 60, 62syl2anc 642 . . . 4  |-  ( ( z  e.  X  /\  x  e.  X  /\  y  e.  X )  ->  ( N `  (
( x G (
-u 1 S z ) ) G ( z G ( -u
1 S y ) ) ) )  <_ 
( ( N `  ( x G (
-u 1 S z ) ) )  +  ( N `  (
z G ( -u
1 S y ) ) ) ) )
64123adant1 973 . . . . 5  |-  ( ( z  e.  X  /\  x  e.  X  /\  y  e.  X )  ->  ( x D y )  =  ( N `
 ( x G ( -u 1 S y ) ) ) )
65 simp1 955 . . . . . . . 8  |-  ( ( z  e.  X  /\  x  e.  X  /\  y  e.  X )  ->  z  e.  X )
66163ad2ant3 978 . . . . . . . 8  |-  ( ( z  e.  X  /\  x  e.  X  /\  y  e.  X )  ->  ( -u 1 S y )  e.  X
)
671, 8nvass 21194 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  (
( x G (
-u 1 S z ) )  e.  X  /\  z  e.  X  /\  ( -u 1 S y )  e.  X
) )  ->  (
( ( x G ( -u 1 S z ) ) G z ) G (
-u 1 S y ) )  =  ( ( x G (
-u 1 S z ) ) G ( z G ( -u
1 S y ) ) ) )
684, 67mpan 651 . . . . . . . 8  |-  ( ( ( x G (
-u 1 S z ) )  e.  X  /\  z  e.  X  /\  ( -u 1 S y )  e.  X
)  ->  ( (
( x G (
-u 1 S z ) ) G z ) G ( -u
1 S y ) )  =  ( ( x G ( -u
1 S z ) ) G ( z G ( -u 1 S y ) ) ) )
6956, 65, 66, 68syl3anc 1182 . . . . . . 7  |-  ( ( z  e.  X  /\  x  e.  X  /\  y  e.  X )  ->  ( ( ( x G ( -u 1 S z ) ) G z ) G ( -u 1 S y ) )  =  ( ( x G ( -u 1 S z ) ) G ( z G (
-u 1 S y ) ) ) )
70 simpl 443 . . . . . . . . . . 11  |-  ( ( z  e.  X  /\  x  e.  X )  ->  z  e.  X )
711, 8nvass 21194 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  (
x  e.  X  /\  ( -u 1 S z )  e.  X  /\  z  e.  X )
)  ->  ( (
x G ( -u
1 S z ) ) G z )  =  ( x G ( ( -u 1 S z ) G z ) ) )
724, 71mpan 651 . . . . . . . . . . 11  |-  ( ( x  e.  X  /\  ( -u 1 S z )  e.  X  /\  z  e.  X )  ->  ( ( x G ( -u 1 S z ) ) G z )  =  ( x G ( (
-u 1 S z ) G z ) ) )
7349, 52, 70, 72syl3anc 1182 . . . . . . . . . 10  |-  ( ( z  e.  X  /\  x  e.  X )  ->  ( ( x G ( -u 1 S z ) ) G z )  =  ( x G ( (
-u 1 S z ) G z ) ) )
741, 8, 9, 20nvlinv 21228 . . . . . . . . . . . . 13  |-  ( ( U  e.  NrmCVec  /\  z  e.  X )  ->  (
( -u 1 S z ) G z )  =  Z )
754, 74mpan 651 . . . . . . . . . . . 12  |-  ( z  e.  X  ->  (
( -u 1 S z ) G z )  =  Z )
7675adantr 451 . . . . . . . . . . 11  |-  ( ( z  e.  X  /\  x  e.  X )  ->  ( ( -u 1 S z ) G z )  =  Z )
7776oveq2d 5890 . . . . . . . . . 10  |-  ( ( z  e.  X  /\  x  e.  X )  ->  ( x G ( ( -u 1 S z ) G z ) )  =  ( x G Z ) )
7840adantl 452 . . . . . . . . . 10  |-  ( ( z  e.  X  /\  x  e.  X )  ->  ( x G Z )  =  x )
7973, 77, 783eqtrd 2332 . . . . . . . . 9  |-  ( ( z  e.  X  /\  x  e.  X )  ->  ( ( x G ( -u 1 S z ) ) G z )  =  x )
80793adant3 975 . . . . . . . 8  |-  ( ( z  e.  X  /\  x  e.  X  /\  y  e.  X )  ->  ( ( x G ( -u 1 S z ) ) G z )  =  x )
8180oveq1d 5889 . . . . . . 7  |-  ( ( z  e.  X  /\  x  e.  X  /\  y  e.  X )  ->  ( ( ( x G ( -u 1 S z ) ) G z ) G ( -u 1 S y ) )  =  ( x G (
-u 1 S y ) ) )
8269, 81eqtr3d 2330 . . . . . 6  |-  ( ( z  e.  X  /\  x  e.  X  /\  y  e.  X )  ->  ( ( x G ( -u 1 S z ) ) G ( z G (
-u 1 S y ) ) )  =  ( x G (
-u 1 S y ) ) )
8382fveq2d 5545 . . . . 5  |-  ( ( z  e.  X  /\  x  e.  X  /\  y  e.  X )  ->  ( N `  (
( x G (
-u 1 S z ) ) G ( z G ( -u
1 S y ) ) ) )  =  ( N `  (
x G ( -u
1 S y ) ) ) )
8464, 83eqtr4d 2331 . . . 4  |-  ( ( z  e.  X  /\  x  e.  X  /\  y  e.  X )  ->  ( x D y )  =  ( N `
 ( ( x G ( -u 1 S z ) ) G ( z G ( -u 1 S y ) ) ) ) )
851, 8, 9, 10, 5imsdval2 21272 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  z  e.  X  /\  x  e.  X )  ->  (
z D x )  =  ( N `  ( z G (
-u 1 S x ) ) ) )
864, 85mp3an1 1264 . . . . . . 7  |-  ( ( z  e.  X  /\  x  e.  X )  ->  ( z D x )  =  ( N `
 ( z G ( -u 1 S x ) ) ) )
871, 8, 9, 10nvdif 21247 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  z  e.  X  /\  x  e.  X )  ->  ( N `  ( z G ( -u 1 S x ) ) )  =  ( N `
 ( x G ( -u 1 S z ) ) ) )
884, 87mp3an1 1264 . . . . . . 7  |-  ( ( z  e.  X  /\  x  e.  X )  ->  ( N `  (
z G ( -u
1 S x ) ) )  =  ( N `  ( x G ( -u 1 S z ) ) ) )
8986, 88eqtrd 2328 . . . . . 6  |-  ( ( z  e.  X  /\  x  e.  X )  ->  ( z D x )  =  ( N `
 ( x G ( -u 1 S z ) ) ) )
90893adant3 975 . . . . 5  |-  ( ( z  e.  X  /\  x  e.  X  /\  y  e.  X )  ->  ( z D x )  =  ( N `
 ( x G ( -u 1 S z ) ) ) )
911, 8, 9, 10, 5imsdval2 21272 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  z  e.  X  /\  y  e.  X )  ->  (
z D y )  =  ( N `  ( z G (
-u 1 S y ) ) ) )
924, 91mp3an1 1264 . . . . . 6  |-  ( ( z  e.  X  /\  y  e.  X )  ->  ( z D y )  =  ( N `
 ( z G ( -u 1 S y ) ) ) )
93923adant2 974 . . . . 5  |-  ( ( z  e.  X  /\  x  e.  X  /\  y  e.  X )  ->  ( z D y )  =  ( N `
 ( z G ( -u 1 S y ) ) ) )
9490, 93oveq12d 5892 . . . 4  |-  ( ( z  e.  X  /\  x  e.  X  /\  y  e.  X )  ->  ( ( z D x )  +  ( z D y ) )  =  ( ( N `  ( x G ( -u 1 S z ) ) )  +  ( N `
 ( z G ( -u 1 S y ) ) ) ) )
9563, 84, 943brtr4d 4069 . . 3  |-  ( ( z  e.  X  /\  x  e.  X  /\  y  e.  X )  ->  ( x D y )  <_  ( (
z D x )  +  ( z D y ) ) )
96953coml 1158 . 2  |-  ( ( x  e.  X  /\  y  e.  X  /\  z  e.  X )  ->  ( x D y )  <_  ( (
z D x )  +  ( z D y ) ) )
973, 7, 48, 96ismeti 17906 1  |-  D  e.  ( Met `  X
)
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   _Vcvv 2801   class class class wbr 4039    X. cxp 4703   -->wf 5267   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    <_ cle 8884   -ucneg 9054   Metcme 16386   invcgn 20871   NrmCVeccnv 21156   +vcpv 21157   BaseSetcba 21158   .s
OLDcns 21159   0veccn0v 21160   normCVcnmcv 21162   IndMetcims 21163
This theorem is referenced by:  imsmet  21276
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-seq 11063  df-exp 11121  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-met 16390  df-grpo 20874  df-gid 20875  df-ginv 20876  df-gdiv 20877  df-ablo 20965  df-vc 21118  df-nv 21164  df-va 21167  df-ba 21168  df-sm 21169  df-0v 21170  df-vs 21171  df-nmcv 21172  df-ims 21173
  Copyright terms: Public domain W3C validator