MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imval Unicode version

Theorem imval 11841
Description: The value of the imaginary part of a complex number. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
Assertion
Ref Expression
imval  |-  ( A  e.  CC  ->  (
Im `  A )  =  ( Re `  ( A  /  _i ) ) )

Proof of Theorem imval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 oveq1 6029 . . 3  |-  ( x  =  A  ->  (
x  /  _i )  =  ( A  /  _i ) )
21fveq2d 5674 . 2  |-  ( x  =  A  ->  (
Re `  ( x  /  _i ) )  =  ( Re `  ( A  /  _i ) ) )
3 df-im 11835 . 2  |-  Im  =  ( x  e.  CC  |->  ( Re `  ( x  /  _i ) ) )
4 fvex 5684 . 2  |-  ( Re
`  ( A  /  _i ) )  e.  _V
52, 3, 4fvmpt 5747 1  |-  ( A  e.  CC  ->  (
Im `  A )  =  ( Re `  ( A  /  _i ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649    e. wcel 1717   ` cfv 5396  (class class class)co 6022   CCcc 8923   _ici 8927    / cdiv 9611   Recre 11831   Imcim 11832
This theorem is referenced by:  imre  11842  reim  11843  imf  11847  crim  11849  iblcnlem1  19548  itgcnlem  19550  tanregt0  20310  cxpsqrlem  20462  ang180lem2  20521  cnre2csqima  24115
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-sep 4273  ax-nul 4281  ax-pr 4346
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-rab 2660  df-v 2903  df-sbc 3107  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-sn 3765  df-pr 3766  df-op 3768  df-uni 3960  df-br 4156  df-opab 4210  df-mpt 4211  df-id 4441  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-iota 5360  df-fun 5398  df-fv 5404  df-ov 6025  df-im 11835
  Copyright terms: Public domain W3C validator