MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imval2 Structured version   Unicode version

Theorem imval2 11956
Description: The imaginary part of a number in terms of complex conjugate. (Contributed by NM, 30-Apr-2005.)
Assertion
Ref Expression
imval2  |-  ( A  e.  CC  ->  (
Im `  A )  =  ( ( A  -  ( * `  A ) )  / 
( 2  x.  _i ) ) )

Proof of Theorem imval2
StepHypRef Expression
1 imcl 11916 . . . 4  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
21recnd 9114 . . 3  |-  ( A  e.  CC  ->  (
Im `  A )  e.  CC )
3 2cn 10070 . . . . 5  |-  2  e.  CC
4 ax-icn 9049 . . . . 5  |-  _i  e.  CC
53, 4mulcli 9095 . . . 4  |-  ( 2  x.  _i )  e.  CC
6 2ne0 10083 . . . . 5  |-  2  =/=  0
7 ine0 9469 . . . . 5  |-  _i  =/=  0
83, 4, 6, 7mulne0i 9665 . . . 4  |-  ( 2  x.  _i )  =/=  0
9 divcan4 9703 . . . 4  |-  ( ( ( Im `  A
)  e.  CC  /\  ( 2  x.  _i )  e.  CC  /\  (
2  x.  _i )  =/=  0 )  -> 
( ( ( Im
`  A )  x.  ( 2  x.  _i ) )  /  (
2  x.  _i ) )  =  ( Im
`  A ) )
105, 8, 9mp3an23 1271 . . 3  |-  ( ( Im `  A )  e.  CC  ->  (
( ( Im `  A )  x.  (
2  x.  _i ) )  /  ( 2  x.  _i ) )  =  ( Im `  A ) )
112, 10syl 16 . 2  |-  ( A  e.  CC  ->  (
( ( Im `  A )  x.  (
2  x.  _i ) )  /  ( 2  x.  _i ) )  =  ( Im `  A ) )
12 recl 11915 . . . . . . 7  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
1312recnd 9114 . . . . . 6  |-  ( A  e.  CC  ->  (
Re `  A )  e.  CC )
14 mulcl 9074 . . . . . . 7  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  (
Im `  A )
)  e.  CC )
154, 2, 14sylancr 645 . . . . . 6  |-  ( A  e.  CC  ->  (
_i  x.  ( Im `  A ) )  e.  CC )
1613, 15addcld 9107 . . . . 5  |-  ( A  e.  CC  ->  (
( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) )  e.  CC )
1716, 13, 15subsubd 9439 . . . 4  |-  ( A  e.  CC  ->  (
( ( Re `  A )  +  ( _i  x.  ( Im
`  A ) ) )  -  ( ( Re `  A )  -  ( _i  x.  ( Im `  A ) ) ) )  =  ( ( ( ( Re `  A )  +  ( _i  x.  ( Im `  A ) ) )  -  (
Re `  A )
)  +  ( _i  x.  ( Im `  A ) ) ) )
18 replim 11921 . . . . 5  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
19 remim 11922 . . . . 5  |-  ( A  e.  CC  ->  (
* `  A )  =  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) ) )
2018, 19oveq12d 6099 . . . 4  |-  ( A  e.  CC  ->  ( A  -  ( * `  A ) )  =  ( ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) )  -  (
( Re `  A
)  -  ( _i  x.  ( Im `  A ) ) ) ) )
21152timesd 10210 . . . . 5  |-  ( A  e.  CC  ->  (
2  x.  ( _i  x.  ( Im `  A ) ) )  =  ( ( _i  x.  ( Im `  A ) )  +  ( _i  x.  (
Im `  A )
) ) )
22 mulcom 9076 . . . . . . . 8  |-  ( ( ( Im `  A
)  e.  CC  /\  ( 2  x.  _i )  e.  CC )  ->  ( ( Im `  A )  x.  (
2  x.  _i ) )  =  ( ( 2  x.  _i )  x.  ( Im `  A ) ) )
235, 22mpan2 653 . . . . . . 7  |-  ( ( Im `  A )  e.  CC  ->  (
( Im `  A
)  x.  ( 2  x.  _i ) )  =  ( ( 2  x.  _i )  x.  ( Im `  A
) ) )
24 mulass 9078 . . . . . . . 8  |-  ( ( 2  e.  CC  /\  _i  e.  CC  /\  (
Im `  A )  e.  CC )  ->  (
( 2  x.  _i )  x.  ( Im `  A ) )  =  ( 2  x.  (
_i  x.  ( Im `  A ) ) ) )
253, 4, 24mp3an12 1269 . . . . . . 7  |-  ( ( Im `  A )  e.  CC  ->  (
( 2  x.  _i )  x.  ( Im `  A ) )  =  ( 2  x.  (
_i  x.  ( Im `  A ) ) ) )
2623, 25eqtrd 2468 . . . . . 6  |-  ( ( Im `  A )  e.  CC  ->  (
( Im `  A
)  x.  ( 2  x.  _i ) )  =  ( 2  x.  ( _i  x.  (
Im `  A )
) ) )
272, 26syl 16 . . . . 5  |-  ( A  e.  CC  ->  (
( Im `  A
)  x.  ( 2  x.  _i ) )  =  ( 2  x.  ( _i  x.  (
Im `  A )
) ) )
2813, 15pncan2d 9413 . . . . . 6  |-  ( A  e.  CC  ->  (
( ( Re `  A )  +  ( _i  x.  ( Im
`  A ) ) )  -  ( Re
`  A ) )  =  ( _i  x.  ( Im `  A ) ) )
2928oveq1d 6096 . . . . 5  |-  ( A  e.  CC  ->  (
( ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) )  -  (
Re `  A )
)  +  ( _i  x.  ( Im `  A ) ) )  =  ( ( _i  x.  ( Im `  A ) )  +  ( _i  x.  (
Im `  A )
) ) )
3021, 27, 293eqtr4d 2478 . . . 4  |-  ( A  e.  CC  ->  (
( Im `  A
)  x.  ( 2  x.  _i ) )  =  ( ( ( ( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) )  -  ( Re `  A ) )  +  ( _i  x.  (
Im `  A )
) ) )
3117, 20, 303eqtr4rd 2479 . . 3  |-  ( A  e.  CC  ->  (
( Im `  A
)  x.  ( 2  x.  _i ) )  =  ( A  -  ( * `  A
) ) )
3231oveq1d 6096 . 2  |-  ( A  e.  CC  ->  (
( ( Im `  A )  x.  (
2  x.  _i ) )  /  ( 2  x.  _i ) )  =  ( ( A  -  ( * `  A ) )  / 
( 2  x.  _i ) ) )
3311, 32eqtr3d 2470 1  |-  ( A  e.  CC  ->  (
Im `  A )  =  ( ( A  -  ( * `  A ) )  / 
( 2  x.  _i ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1652    e. wcel 1725    =/= wne 2599   ` cfv 5454  (class class class)co 6081   CCcc 8988   0cc0 8990   _ici 8992    + caddc 8993    x. cmul 8995    - cmin 9291    / cdiv 9677   2c2 10049   *ccj 11901   Recre 11902   Imcim 11903
This theorem is referenced by:  resinval  12736  dvmptim  19856
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-po 4503  df-so 4504  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-riota 6549  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-2 10058  df-cj 11904  df-re 11905  df-im 11906
  Copyright terms: Public domain W3C validator