Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  in2an Structured version   Unicode version

Theorem in2an 28807
Description: The virtual deduction introduction rule converting the second conjunct of the second virtual hypothesis into the antecedent of the conclusion. exp3a 427 is the non-virtual deduction form of in2an 28807. (Contributed by Alan Sare, 30-Jun-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
in2an.1  |-  (. ph ,. ( ps  /\  ch ) 
->.  th ).
Assertion
Ref Expression
in2an  |-  (. ph ,. ps  ->.  ( ch  ->  th ) ).

Proof of Theorem in2an
StepHypRef Expression
1 in2an.1 . . . 4  |-  (. ph ,. ( ps  /\  ch ) 
->.  th ).
21dfvd2i 28775 . . 3  |-  ( ph  ->  ( ( ps  /\  ch )  ->  th )
)
32exp3a 427 . 2  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
43dfvd2ir 28776 1  |-  (. ph ,. ps  ->.  ( ch  ->  th ) ).
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360   (.wvd2 28767
This theorem is referenced by:  onfrALTVD  29101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 179  df-an 362  df-vd2 28768
  Copyright terms: Public domain W3C validator