MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inabs Unicode version

Theorem inabs 3540
Description: Absorption law for intersection. (Contributed by NM, 16-Apr-2006.)
Assertion
Ref Expression
inabs  |-  ( A  i^i  ( A  u.  B ) )  =  A

Proof of Theorem inabs
StepHypRef Expression
1 ssun1 3478 . 2  |-  A  C_  ( A  u.  B
)
2 df-ss 3302 . 2  |-  ( A 
C_  ( A  u.  B )  <->  ( A  i^i  ( A  u.  B
) )  =  A )
31, 2mpbi 200 1  |-  ( A  i^i  ( A  u.  B ) )  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1649    u. cun 3286    i^i cin 3287    C_ wss 3288
This theorem is referenced by:  dfif5  3719
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-v 2926  df-un 3293  df-in 3295  df-ss 3302
  Copyright terms: Public domain W3C validator