Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  incsequz2 Structured version   Unicode version

Theorem incsequz2 26467
Description: An increasing sequence of natural numbers takes on indefinitely large values. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
incsequz2  |-  ( ( F : NN --> NN  /\  A. m  e.  NN  ( F `  m )  <  ( F `  (
m  +  1 ) )  /\  A  e.  NN )  ->  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  ( ZZ>= `  A ) )
Distinct variable groups:    k, F, m, n    A, k, m, n

Proof of Theorem incsequz2
Dummy variables  p  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 incsequz 26466 . 2  |-  ( ( F : NN --> NN  /\  A. m  e.  NN  ( F `  m )  <  ( F `  (
m  +  1 ) )  /\  A  e.  NN )  ->  E. n  e.  NN  ( F `  n )  e.  (
ZZ>= `  A ) )
2 nnssre 10009 . . . . . . . . 9  |-  NN  C_  RR
3 ltso 9161 . . . . . . . . . 10  |-  <  Or  RR
4 sopo 4523 . . . . . . . . . 10  |-  (  < 
Or  RR  ->  <  Po  RR )
53, 4ax-mp 5 . . . . . . . . 9  |-  <  Po  RR
6 poss 4508 . . . . . . . . 9  |-  ( NN  C_  RR  ->  (  <  Po  RR  ->  <  Po  NN ) )
72, 5, 6mp2 9 . . . . . . . 8  |-  <  Po  NN
8 seqpo 26465 . . . . . . . 8  |-  ( (  <  Po  NN  /\  F : NN --> NN )  ->  ( A. m  e.  NN  ( F `  m )  <  ( F `  ( m  +  1 ) )  <->  A. p  e.  NN  A. q  e.  ( ZZ>= `  ( p  +  1
) ) ( F `
 p )  < 
( F `  q
) ) )
97, 8mpan 653 . . . . . . 7  |-  ( F : NN --> NN  ->  ( A. m  e.  NN  ( F `  m )  <  ( F `  ( m  +  1
) )  <->  A. p  e.  NN  A. q  e.  ( ZZ>= `  ( p  +  1 ) ) ( F `  p
)  <  ( F `  q ) ) )
109biimpd 200 . . . . . 6  |-  ( F : NN --> NN  ->  ( A. m  e.  NN  ( F `  m )  <  ( F `  ( m  +  1
) )  ->  A. p  e.  NN  A. q  e.  ( ZZ>= `  ( p  +  1 ) ) ( F `  p
)  <  ( F `  q ) ) )
1110imdistani 673 . . . . 5  |-  ( ( F : NN --> NN  /\  A. m  e.  NN  ( F `  m )  <  ( F `  (
m  +  1 ) ) )  ->  ( F : NN --> NN  /\  A. p  e.  NN  A. q  e.  ( ZZ>= `  ( p  +  1
) ) ( F `
 p )  < 
( F `  q
) ) )
12 uzp1 10524 . . . . . . . . . 10  |-  ( k  e.  ( ZZ>= `  n
)  ->  ( k  =  n  \/  k  e.  ( ZZ>= `  ( n  +  1 ) ) ) )
13 fveq2 5731 . . . . . . . . . . . . . 14  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
1413adantl 454 . . . . . . . . . . . . 13  |-  ( ( ( F : NN --> NN  /\  n  e.  NN )  /\  k  =  n )  ->  ( F `  k )  =  ( F `  n ) )
15 ffvelrn 5871 . . . . . . . . . . . . . . . 16  |-  ( ( F : NN --> NN  /\  n  e.  NN )  ->  ( F `  n
)  e.  NN )
1615nnzd 10379 . . . . . . . . . . . . . . 15  |-  ( ( F : NN --> NN  /\  n  e.  NN )  ->  ( F `  n
)  e.  ZZ )
17 uzid 10505 . . . . . . . . . . . . . . 15  |-  ( ( F `  n )  e.  ZZ  ->  ( F `  n )  e.  ( ZZ>= `  ( F `  n ) ) )
1816, 17syl 16 . . . . . . . . . . . . . 14  |-  ( ( F : NN --> NN  /\  n  e.  NN )  ->  ( F `  n
)  e.  ( ZZ>= `  ( F `  n ) ) )
1918adantr 453 . . . . . . . . . . . . 13  |-  ( ( ( F : NN --> NN  /\  n  e.  NN )  /\  k  =  n )  ->  ( F `  n )  e.  (
ZZ>= `  ( F `  n ) ) )
2014, 19eqeltrd 2512 . . . . . . . . . . . 12  |-  ( ( ( F : NN --> NN  /\  n  e.  NN )  /\  k  =  n )  ->  ( F `  k )  e.  (
ZZ>= `  ( F `  n ) ) )
2120adantllr 701 . . . . . . . . . . 11  |-  ( ( ( ( F : NN
--> NN  /\  A. p  e.  NN  A. q  e.  ( ZZ>= `  ( p  +  1 ) ) ( F `  p
)  <  ( F `  q ) )  /\  n  e.  NN )  /\  k  =  n
)  ->  ( F `  k )  e.  (
ZZ>= `  ( F `  n ) ) )
22 oveq1 6091 . . . . . . . . . . . . . . . . 17  |-  ( p  =  n  ->  (
p  +  1 )  =  ( n  + 
1 ) )
2322fveq2d 5735 . . . . . . . . . . . . . . . 16  |-  ( p  =  n  ->  ( ZZ>=
`  ( p  + 
1 ) )  =  ( ZZ>= `  ( n  +  1 ) ) )
24 fveq2 5731 . . . . . . . . . . . . . . . . 17  |-  ( p  =  n  ->  ( F `  p )  =  ( F `  n ) )
2524breq1d 4225 . . . . . . . . . . . . . . . 16  |-  ( p  =  n  ->  (
( F `  p
)  <  ( F `  q )  <->  ( F `  n )  <  ( F `  q )
) )
2623, 25raleqbidv 2918 . . . . . . . . . . . . . . 15  |-  ( p  =  n  ->  ( A. q  e.  ( ZZ>=
`  ( p  + 
1 ) ) ( F `  p )  <  ( F `  q )  <->  A. q  e.  ( ZZ>= `  ( n  +  1 ) ) ( F `  n
)  <  ( F `  q ) ) )
2726rspccva 3053 . . . . . . . . . . . . . 14  |-  ( ( A. p  e.  NN  A. q  e.  ( ZZ>= `  ( p  +  1
) ) ( F `
 p )  < 
( F `  q
)  /\  n  e.  NN )  ->  A. q  e.  ( ZZ>= `  ( n  +  1 ) ) ( F `  n
)  <  ( F `  q ) )
28 fveq2 5731 . . . . . . . . . . . . . . . 16  |-  ( q  =  k  ->  ( F `  q )  =  ( F `  k ) )
2928breq2d 4227 . . . . . . . . . . . . . . 15  |-  ( q  =  k  ->  (
( F `  n
)  <  ( F `  q )  <->  ( F `  n )  <  ( F `  k )
) )
3029rspccva 3053 . . . . . . . . . . . . . 14  |-  ( ( A. q  e.  (
ZZ>= `  ( n  + 
1 ) ) ( F `  n )  <  ( F `  q )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  ( F `  n )  <  ( F `  k )
)
3127, 30sylan 459 . . . . . . . . . . . . 13  |-  ( ( ( A. p  e.  NN  A. q  e.  ( ZZ>= `  ( p  +  1 ) ) ( F `  p
)  <  ( F `  q )  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  ( F `  n )  <  ( F `  k )
)
3231adantlll 700 . . . . . . . . . . . 12  |-  ( ( ( ( F : NN
--> NN  /\  A. p  e.  NN  A. q  e.  ( ZZ>= `  ( p  +  1 ) ) ( F `  p
)  <  ( F `  q ) )  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( F `  n )  <  ( F `  k )
)
3316adantr 453 . . . . . . . . . . . . . 14  |-  ( ( ( F : NN --> NN  /\  n  e.  NN )  /\  k  e.  (
ZZ>= `  ( n  + 
1 ) ) )  ->  ( F `  n )  e.  ZZ )
34 peano2nn 10017 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  NN  ->  (
n  +  1 )  e.  NN )
35 elnnuz 10527 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  +  1 )  e.  NN  <->  ( n  +  1 )  e.  ( ZZ>= `  1 )
)
3634, 35sylib 190 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN  ->  (
n  +  1 )  e.  ( ZZ>= `  1
) )
37 uztrn 10507 . . . . . . . . . . . . . . . . . . 19  |-  ( ( k  e.  ( ZZ>= `  ( n  +  1
) )  /\  (
n  +  1 )  e.  ( ZZ>= `  1
) )  ->  k  e.  ( ZZ>= `  1 )
)
3837ancoms 441 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( n  +  1 )  e.  ( ZZ>= ` 
1 )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  k  e.  ( ZZ>= `  1 )
)
39 elnnuz 10527 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  NN  <->  k  e.  ( ZZ>= `  1 )
)
4038, 39sylibr 205 . . . . . . . . . . . . . . . . 17  |-  ( ( ( n  +  1 )  e.  ( ZZ>= ` 
1 )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  k  e.  NN )
4136, 40sylan 459 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  NN  /\  k  e.  ( ZZ>= `  ( n  +  1
) ) )  -> 
k  e.  NN )
42 ffvelrn 5871 . . . . . . . . . . . . . . . . 17  |-  ( ( F : NN --> NN  /\  k  e.  NN )  ->  ( F `  k
)  e.  NN )
4342nnzd 10379 . . . . . . . . . . . . . . . 16  |-  ( ( F : NN --> NN  /\  k  e.  NN )  ->  ( F `  k
)  e.  ZZ )
4441, 43sylan2 462 . . . . . . . . . . . . . . 15  |-  ( ( F : NN --> NN  /\  ( n  e.  NN  /\  k  e.  ( ZZ>= `  ( n  +  1
) ) ) )  ->  ( F `  k )  e.  ZZ )
4544anassrs 631 . . . . . . . . . . . . . 14  |-  ( ( ( F : NN --> NN  /\  n  e.  NN )  /\  k  e.  (
ZZ>= `  ( n  + 
1 ) ) )  ->  ( F `  k )  e.  ZZ )
46 zre 10291 . . . . . . . . . . . . . . . 16  |-  ( ( F `  n )  e.  ZZ  ->  ( F `  n )  e.  RR )
47 zre 10291 . . . . . . . . . . . . . . . 16  |-  ( ( F `  k )  e.  ZZ  ->  ( F `  k )  e.  RR )
48 ltle 9168 . . . . . . . . . . . . . . . 16  |-  ( ( ( F `  n
)  e.  RR  /\  ( F `  k )  e.  RR )  -> 
( ( F `  n )  <  ( F `  k )  ->  ( F `  n
)  <_  ( F `  k ) ) )
4946, 47, 48syl2an 465 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  n
)  e.  ZZ  /\  ( F `  k )  e.  ZZ )  -> 
( ( F `  n )  <  ( F `  k )  ->  ( F `  n
)  <_  ( F `  k ) ) )
50 eluz 10504 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  n
)  e.  ZZ  /\  ( F `  k )  e.  ZZ )  -> 
( ( F `  k )  e.  (
ZZ>= `  ( F `  n ) )  <->  ( F `  n )  <_  ( F `  k )
) )
5149, 50sylibrd 227 . . . . . . . . . . . . . 14  |-  ( ( ( F `  n
)  e.  ZZ  /\  ( F `  k )  e.  ZZ )  -> 
( ( F `  n )  <  ( F `  k )  ->  ( F `  k
)  e.  ( ZZ>= `  ( F `  n ) ) ) )
5233, 45, 51syl2anc 644 . . . . . . . . . . . . 13  |-  ( ( ( F : NN --> NN  /\  n  e.  NN )  /\  k  e.  (
ZZ>= `  ( n  + 
1 ) ) )  ->  ( ( F `
 n )  < 
( F `  k
)  ->  ( F `  k )  e.  (
ZZ>= `  ( F `  n ) ) ) )
5352adantllr 701 . . . . . . . . . . . 12  |-  ( ( ( ( F : NN
--> NN  /\  A. p  e.  NN  A. q  e.  ( ZZ>= `  ( p  +  1 ) ) ( F `  p
)  <  ( F `  q ) )  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( ( F `
 n )  < 
( F `  k
)  ->  ( F `  k )  e.  (
ZZ>= `  ( F `  n ) ) ) )
5432, 53mpd 15 . . . . . . . . . . 11  |-  ( ( ( ( F : NN
--> NN  /\  A. p  e.  NN  A. q  e.  ( ZZ>= `  ( p  +  1 ) ) ( F `  p
)  <  ( F `  q ) )  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( F `  k )  e.  (
ZZ>= `  ( F `  n ) ) )
5521, 54jaodan 762 . . . . . . . . . 10  |-  ( ( ( ( F : NN
--> NN  /\  A. p  e.  NN  A. q  e.  ( ZZ>= `  ( p  +  1 ) ) ( F `  p
)  <  ( F `  q ) )  /\  n  e.  NN )  /\  ( k  =  n  \/  k  e.  (
ZZ>= `  ( n  + 
1 ) ) ) )  ->  ( F `  k )  e.  (
ZZ>= `  ( F `  n ) ) )
5612, 55sylan2 462 . . . . . . . . 9  |-  ( ( ( ( F : NN
--> NN  /\  A. p  e.  NN  A. q  e.  ( ZZ>= `  ( p  +  1 ) ) ( F `  p
)  <  ( F `  q ) )  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  ->  ( F `  k )  e.  (
ZZ>= `  ( F `  n ) ) )
57 uztrn 10507 . . . . . . . . . 10  |-  ( ( ( F `  k
)  e.  ( ZZ>= `  ( F `  n ) )  /\  ( F `
 n )  e.  ( ZZ>= `  A )
)  ->  ( F `  k )  e.  (
ZZ>= `  A ) )
5857ex 425 . . . . . . . . 9  |-  ( ( F `  k )  e.  ( ZZ>= `  ( F `  n )
)  ->  ( ( F `  n )  e.  ( ZZ>= `  A )  ->  ( F `  k
)  e.  ( ZZ>= `  A ) ) )
5956, 58syl 16 . . . . . . . 8  |-  ( ( ( ( F : NN
--> NN  /\  A. p  e.  NN  A. q  e.  ( ZZ>= `  ( p  +  1 ) ) ( F `  p
)  <  ( F `  q ) )  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  ->  ( ( F `
 n )  e.  ( ZZ>= `  A )  ->  ( F `  k
)  e.  ( ZZ>= `  A ) ) )
6059adantllr 701 . . . . . . 7  |-  ( ( ( ( ( F : NN --> NN  /\  A. p  e.  NN  A. q  e.  ( ZZ>= `  ( p  +  1
) ) ( F `
 p )  < 
( F `  q
) )  /\  A  e.  NN )  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  n )  e.  ( ZZ>= `  A )  ->  ( F `  k
)  e.  ( ZZ>= `  A ) ) )
6160ralrimdva 2798 . . . . . 6  |-  ( ( ( ( F : NN
--> NN  /\  A. p  e.  NN  A. q  e.  ( ZZ>= `  ( p  +  1 ) ) ( F `  p
)  <  ( F `  q ) )  /\  A  e.  NN )  /\  n  e.  NN )  ->  ( ( F `
 n )  e.  ( ZZ>= `  A )  ->  A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  ( ZZ>= `  A
) ) )
6261ex 425 . . . . 5  |-  ( ( ( F : NN --> NN  /\  A. p  e.  NN  A. q  e.  ( ZZ>= `  ( p  +  1 ) ) ( F `  p
)  <  ( F `  q ) )  /\  A  e.  NN )  ->  ( n  e.  NN  ->  ( ( F `  n )  e.  (
ZZ>= `  A )  ->  A. k  e.  ( ZZ>=
`  n ) ( F `  k )  e.  ( ZZ>= `  A
) ) ) )
6311, 62sylan 459 . . . 4  |-  ( ( ( F : NN --> NN  /\  A. m  e.  NN  ( F `  m )  <  ( F `  ( m  +  1 ) ) )  /\  A  e.  NN )  ->  (
n  e.  NN  ->  ( ( F `  n
)  e.  ( ZZ>= `  A )  ->  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  ( ZZ>= `  A ) ) ) )
64633impa 1149 . . 3  |-  ( ( F : NN --> NN  /\  A. m  e.  NN  ( F `  m )  <  ( F `  (
m  +  1 ) )  /\  A  e.  NN )  ->  (
n  e.  NN  ->  ( ( F `  n
)  e.  ( ZZ>= `  A )  ->  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  ( ZZ>= `  A ) ) ) )
6564reximdvai 2818 . 2  |-  ( ( F : NN --> NN  /\  A. m  e.  NN  ( F `  m )  <  ( F `  (
m  +  1 ) )  /\  A  e.  NN )  ->  ( E. n  e.  NN  ( F `  n )  e.  ( ZZ>= `  A
)  ->  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  ( ZZ>= `  A ) ) )
661, 65mpd 15 1  |-  ( ( F : NN --> NN  /\  A. m  e.  NN  ( F `  m )  <  ( F `  (
m  +  1 ) )  /\  A  e.  NN )  ->  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  ( ZZ>= `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    \/ wo 359    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   A.wral 2707   E.wrex 2708    C_ wss 3322   class class class wbr 4215    Po wpo 4504    Or wor 4505   -->wf 5453   ` cfv 5457  (class class class)co 6084   RRcr 8994   1c1 8996    + caddc 8998    < clt 9125    <_ cle 9126   NNcn 10005   ZZcz 10287   ZZ>=cuz 10493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-riota 6552  df-recs 6636  df-rdg 6671  df-er 6908  df-en 7113  df-dom 7114  df-sdom 7115  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-nn 10006  df-n0 10227  df-z 10288  df-uz 10494
  Copyright terms: Public domain W3C validator