Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indexa Unicode version

Theorem indexa 26325
Description: If for every element of an indexing set  A there exists a corresponding element of another set  B, then there exists a subset of  B consisting only of those elements which are indexed by  A. Used to avoid the Axiom of Choice in situations where only the range of the choice function is needed. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
indexa  |-  ( ( B  e.  M  /\  A. x  e.  A  E. y  e.  B  ph )  ->  E. c ( c 
C_  B  /\  A. x  e.  A  E. y  e.  c  ph  /\ 
A. y  e.  c  E. x  e.  A  ph ) )
Distinct variable groups:    x, A, y, c    x, B, y, c    ph, c
Allowed substitution hints:    ph( x, y)    M( x, y, c)

Proof of Theorem indexa
Dummy variables  z  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabexg 4313 . 2  |-  ( B  e.  M  ->  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }  e.  _V )
2 ssrab2 3388 . . . 4  |-  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }  C_  B
32a1i 11 . . 3  |-  ( A. x  e.  A  E. y  e.  B  ph  ->  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }  C_  B )
4 nfv 1626 . . . . 5  |-  F/ y  x  e.  A
5 nfre1 2722 . . . . 5  |-  F/ y E. y  e.  {
z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } ph
6 sbceq2a 3132 . . . . . . . . . . . . . . 15  |-  ( w  =  x  ->  ( [. w  /  x ]. ph  <->  ph ) )
76rspcev 3012 . . . . . . . . . . . . . 14  |-  ( ( x  e.  A  /\  ph )  ->  E. w  e.  A  [. w  /  x ]. ph )
87ancoms 440 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  E. w  e.  A  [. w  /  x ]. ph )
98anim2i 553 . . . . . . . . . . . 12  |-  ( ( y  e.  B  /\  ( ph  /\  x  e.  A ) )  -> 
( y  e.  B  /\  E. w  e.  A  [. w  /  x ]. ph ) )
109ancoms 440 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  A )  /\  y  e.  B )  ->  (
y  e.  B  /\  E. w  e.  A  [. w  /  x ]. ph )
)
1110anasss 629 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  -> 
( y  e.  B  /\  E. w  e.  A  [. w  /  x ]. ph ) )
1211ancoms 440 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  ph )  -> 
( y  e.  B  /\  E. w  e.  A  [. w  /  x ]. ph ) )
13 sbceq2a 3132 . . . . . . . . . . . 12  |-  ( z  =  y  ->  ( [. z  /  y ]. ph  <->  ph ) )
1413sbcbidv 3175 . . . . . . . . . . 11  |-  ( z  =  y  ->  ( [. w  /  x ]. [. z  /  y ]. ph  <->  [. w  /  x ]. ph ) )
1514rexbidv 2687 . . . . . . . . . 10  |-  ( z  =  y  ->  ( E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph  <->  E. w  e.  A  [. w  /  x ]. ph )
)
1615elrab 3052 . . . . . . . . 9  |-  ( y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  / 
y ]. ph }  <->  ( y  e.  B  /\  E. w  e.  A  [. w  /  x ]. ph ) )
1712, 16sylibr 204 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  ph )  -> 
y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }
)
18 sbceq2a 3132 . . . . . . . . 9  |-  ( v  =  y  ->  ( [. v  /  y ]. ph  <->  ph ) )
1918rspcev 3012 . . . . . . . 8  |-  ( ( y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }  /\  ph )  ->  E. v  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } [. v  / 
y ]. ph )
2017, 19sylancom 649 . . . . . . 7  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  ph )  ->  E. v  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } [. v  /  y ]. ph )
21 nfcv 2540 . . . . . . . 8  |-  F/_ v { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }
22 nfcv 2540 . . . . . . . . . 10  |-  F/_ y A
23 nfcv 2540 . . . . . . . . . . 11  |-  F/_ y
w
24 nfsbc1v 3140 . . . . . . . . . . 11  |-  F/ y
[. z  /  y ]. ph
2523, 24nfsbc 3142 . . . . . . . . . 10  |-  F/ y
[. w  /  x ]. [. z  /  y ]. ph
2622, 25nfrex 2721 . . . . . . . . 9  |-  F/ y E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph
27 nfcv 2540 . . . . . . . . 9  |-  F/_ y B
2826, 27nfrab 2849 . . . . . . . 8  |-  F/_ y { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }
29 nfsbc1v 3140 . . . . . . . 8  |-  F/ y
[. v  /  y ]. ph
30 nfv 1626 . . . . . . . 8  |-  F/ v
ph
3121, 28, 29, 30, 18cbvrexf 2887 . . . . . . 7  |-  ( E. v  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } [. v  /  y ]. ph  <->  E. y  e.  {
z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } ph )
3220, 31sylib 189 . . . . . 6  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  ph )  ->  E. y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } ph )
3332exp31 588 . . . . 5  |-  ( x  e.  A  ->  (
y  e.  B  -> 
( ph  ->  E. y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } ph ) ) )
344, 5, 33rexlimd 2787 . . . 4  |-  ( x  e.  A  ->  ( E. y  e.  B  ph 
->  E. y  e.  {
z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } ph ) )
3534ralimia 2739 . . 3  |-  ( A. x  e.  A  E. y  e.  B  ph  ->  A. x  e.  A  E. y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } ph )
36 nfsbc1v 3140 . . . . . . . . 9  |-  F/ x [. w  /  x ]. ph
37 nfv 1626 . . . . . . . . 9  |-  F/ w ph
3836, 37, 6cbvrex 2889 . . . . . . . 8  |-  ( E. w  e.  A  [. w  /  x ]. ph  <->  E. x  e.  A  ph )
3915, 38syl6bb 253 . . . . . . 7  |-  ( z  =  y  ->  ( E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph  <->  E. x  e.  A  ph ) )
4039elrab 3052 . . . . . 6  |-  ( y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  / 
y ]. ph }  <->  ( y  e.  B  /\  E. x  e.  A  ph ) )
4140simprbi 451 . . . . 5  |-  ( y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  / 
y ]. ph }  ->  E. x  e.  A  ph )
4241rgen 2731 . . . 4  |-  A. y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } E. x  e.  A  ph
4342a1i 11 . . 3  |-  ( A. x  e.  A  E. y  e.  B  ph  ->  A. y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } E. x  e.  A  ph )
443, 35, 433jca 1134 . 2  |-  ( A. x  e.  A  E. y  e.  B  ph  ->  ( { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }  C_  B  /\  A. x  e.  A  E. y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } ph  /\  A. y  e. 
{ z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } E. x  e.  A  ph ) )
45 sseq1 3329 . . . . 5  |-  ( c  =  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  / 
y ]. ph }  ->  ( c  C_  B  <->  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }  C_  B ) )
46 nfcv 2540 . . . . . . . . 9  |-  F/_ x A
47 nfsbc1v 3140 . . . . . . . . 9  |-  F/ x [. w  /  x ]. [. z  /  y ]. ph
4846, 47nfrex 2721 . . . . . . . 8  |-  F/ x E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph
49 nfcv 2540 . . . . . . . 8  |-  F/_ x B
5048, 49nfrab 2849 . . . . . . 7  |-  F/_ x { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }
5150nfeq2 2551 . . . . . 6  |-  F/ x  c  =  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }
52 nfcv 2540 . . . . . . 7  |-  F/_ y
c
5352, 28rexeqf 2861 . . . . . 6  |-  ( c  =  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  / 
y ]. ph }  ->  ( E. y  e.  c 
ph 
<->  E. y  e.  {
z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } ph ) )
5451, 53ralbid 2684 . . . . 5  |-  ( c  =  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  / 
y ]. ph }  ->  ( A. x  e.  A  E. y  e.  c  ph 
<-> 
A. x  e.  A  E. y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } ph ) )
5552, 28raleqf 2860 . . . . 5  |-  ( c  =  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  / 
y ]. ph }  ->  ( A. y  e.  c  E. x  e.  A  ph  <->  A. y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } E. x  e.  A  ph ) )
5645, 54, 553anbi123d 1254 . . . 4  |-  ( c  =  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  / 
y ]. ph }  ->  ( ( c  C_  B  /\  A. x  e.  A  E. y  e.  c  ph  /\  A. y  e.  c  E. x  e.  A  ph )  <->  ( {
z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }  C_  B  /\  A. x  e.  A  E. y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } ph  /\  A. y  e. 
{ z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } E. x  e.  A  ph ) ) )
5756spcegv 2997 . . 3  |-  ( { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }  e.  _V  ->  ( ( { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  / 
y ]. ph }  C_  B  /\  A. x  e.  A  E. y  e. 
{ z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } ph  /\  A. y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } E. x  e.  A  ph )  ->  E. c
( c  C_  B  /\  A. x  e.  A  E. y  e.  c  ph  /\  A. y  e.  c  E. x  e.  A  ph ) ) )
5857imp 419 . 2  |-  ( ( { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }  e.  _V  /\  ( { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }  C_  B  /\  A. x  e.  A  E. y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } ph  /\  A. y  e. 
{ z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } E. x  e.  A  ph ) )  ->  E. c ( c 
C_  B  /\  A. x  e.  A  E. y  e.  c  ph  /\ 
A. y  e.  c  E. x  e.  A  ph ) )
591, 44, 58syl2an 464 1  |-  ( ( B  e.  M  /\  A. x  e.  A  E. y  e.  B  ph )  ->  E. c ( c 
C_  B  /\  A. x  e.  A  E. y  e.  c  ph  /\ 
A. y  e.  c  E. x  e.  A  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936   E.wex 1547    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667   {crab 2670   _Vcvv 2916   [.wsbc 3121    C_ wss 3280
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290
This theorem depends on definitions:  df-bi 178  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-in 3287  df-ss 3294
  Copyright terms: Public domain W3C validator