Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indexdom Structured version   Unicode version

Theorem indexdom 26427
Description: If for every element of an indexing set  A there exists a corresponding element of another set  B, then there exists a subset of  B consisting only of those elements which are indexed by  A, and which is dominated by the set  A. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
indexdom  |-  ( ( A  e.  M  /\  A. x  e.  A  E. y  e.  B  ph )  ->  E. c ( ( c  ~<_  A  /\  c  C_  B )  /\  ( A. x  e.  A  E. y  e.  c  ph  /\  A. y  e.  c  E. x  e.  A  ph ) ) )
Distinct variable groups:    A, c, x, y    B, c, x, y    ph, c
Allowed substitution hints:    ph( x, y)    M( x, y, c)

Proof of Theorem indexdom
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 nfsbc1v 3172 . . 3  |-  F/ y
[. ( f `  x )  /  y ]. ph
2 sbceq1a 3163 . . 3  |-  ( y  =  ( f `  x )  ->  ( ph 
<-> 
[. ( f `  x )  /  y ]. ph ) )
31, 2ac6gf 26425 . 2  |-  ( ( A  e.  M  /\  A. x  e.  A  E. y  e.  B  ph )  ->  E. f ( f : A --> B  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph ) )
4 fdm 5587 . . . . . . 7  |-  ( f : A --> B  ->  dom  f  =  A
)
5 vex 2951 . . . . . . . 8  |-  f  e. 
_V
65dmex 5124 . . . . . . 7  |-  dom  f  e.  _V
74, 6syl6eqelr 2524 . . . . . 6  |-  ( f : A --> B  ->  A  e.  _V )
8 ffn 5583 . . . . . 6  |-  ( f : A --> B  -> 
f  Fn  A )
9 fnrndomg 8405 . . . . . 6  |-  ( A  e.  _V  ->  (
f  Fn  A  ->  ran  f  ~<_  A )
)
107, 8, 9sylc 58 . . . . 5  |-  ( f : A --> B  ->  ran  f  ~<_  A )
1110adantr 452 . . . 4  |-  ( ( f : A --> B  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph )  ->  ran  f  ~<_  A )
12 frn 5589 . . . . 5  |-  ( f : A --> B  ->  ran  f  C_  B )
1312adantr 452 . . . 4  |-  ( ( f : A --> B  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph )  ->  ran  f  C_  B )
14 nfv 1629 . . . . . 6  |-  F/ x  f : A --> B
15 nfra1 2748 . . . . . 6  |-  F/ x A. x  e.  A  [. ( f `  x
)  /  y ]. ph
1614, 15nfan 1846 . . . . 5  |-  F/ x
( f : A --> B  /\  A. x  e.  A  [. ( f `
 x )  / 
y ]. ph )
17 ffun 5585 . . . . . . . . . 10  |-  ( f : A --> B  ->  Fun  f )
1817adantr 452 . . . . . . . . 9  |-  ( ( f : A --> B  /\  x  e.  A )  ->  Fun  f )
194eleq2d 2502 . . . . . . . . . 10  |-  ( f : A --> B  -> 
( x  e.  dom  f 
<->  x  e.  A ) )
2019biimpar 472 . . . . . . . . 9  |-  ( ( f : A --> B  /\  x  e.  A )  ->  x  e.  dom  f
)
21 fvelrn 5858 . . . . . . . . 9  |-  ( ( Fun  f  /\  x  e.  dom  f )  -> 
( f `  x
)  e.  ran  f
)
2218, 20, 21syl2anc 643 . . . . . . . 8  |-  ( ( f : A --> B  /\  x  e.  A )  ->  ( f `  x
)  e.  ran  f
)
2322adantlr 696 . . . . . . 7  |-  ( ( ( f : A --> B  /\  A. x  e.  A  [. ( f `
 x )  / 
y ]. ph )  /\  x  e.  A )  ->  ( f `  x
)  e.  ran  f
)
24 rsp 2758 . . . . . . . . 9  |-  ( A. x  e.  A  [. (
f `  x )  /  y ]. ph  ->  ( x  e.  A  ->  [. ( f `  x
)  /  y ]. ph ) )
2524imp 419 . . . . . . . 8  |-  ( ( A. x  e.  A  [. ( f `  x
)  /  y ]. ph 
/\  x  e.  A
)  ->  [. ( f `
 x )  / 
y ]. ph )
2625adantll 695 . . . . . . 7  |-  ( ( ( f : A --> B  /\  A. x  e.  A  [. ( f `
 x )  / 
y ]. ph )  /\  x  e.  A )  ->  [. ( f `  x )  /  y ]. ph )
27 rspesbca 3233 . . . . . . 7  |-  ( ( ( f `  x
)  e.  ran  f  /\  [. ( f `  x )  /  y ]. ph )  ->  E. y  e.  ran  f ph )
2823, 26, 27syl2anc 643 . . . . . 6  |-  ( ( ( f : A --> B  /\  A. x  e.  A  [. ( f `
 x )  / 
y ]. ph )  /\  x  e.  A )  ->  E. y  e.  ran  f ph )
2928ex 424 . . . . 5  |-  ( ( f : A --> B  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph )  ->  ( x  e.  A  ->  E. y  e.  ran  f ph )
)
3016, 29ralrimi 2779 . . . 4  |-  ( ( f : A --> B  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph )  ->  A. x  e.  A  E. y  e.  ran  f ph )
31 nfv 1629 . . . . . 6  |-  F/ y  f : A --> B
32 nfcv 2571 . . . . . . 7  |-  F/_ y A
3332, 1nfral 2751 . . . . . 6  |-  F/ y A. x  e.  A  [. ( f `  x
)  /  y ]. ph
3431, 33nfan 1846 . . . . 5  |-  F/ y ( f : A --> B  /\  A. x  e.  A  [. ( f `
 x )  / 
y ]. ph )
35 fvelrnb 5766 . . . . . . . 8  |-  ( f  Fn  A  ->  (
y  e.  ran  f  <->  E. x  e.  A  ( f `  x )  =  y ) )
368, 35syl 16 . . . . . . 7  |-  ( f : A --> B  -> 
( y  e.  ran  f 
<->  E. x  e.  A  ( f `  x
)  =  y ) )
3736adantr 452 . . . . . 6  |-  ( ( f : A --> B  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph )  ->  ( y  e.  ran  f  <->  E. x  e.  A  ( f `  x )  =  y ) )
3824adantl 453 . . . . . . . 8  |-  ( ( f : A --> B  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph )  ->  ( x  e.  A  ->  [. (
f `  x )  /  y ]. ph )
)
392eqcoms 2438 . . . . . . . . 9  |-  ( ( f `  x )  =  y  ->  ( ph 
<-> 
[. ( f `  x )  /  y ]. ph ) )
4039biimprcd 217 . . . . . . . 8  |-  ( [. ( f `  x
)  /  y ]. ph 
->  ( ( f `  x )  =  y  ->  ph ) )
4138, 40syl6 31 . . . . . . 7  |-  ( ( f : A --> B  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph )  ->  ( x  e.  A  ->  ( ( f `  x )  =  y  ->  ph )
) )
4216, 41reximdai 2806 . . . . . 6  |-  ( ( f : A --> B  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph )  ->  ( E. x  e.  A  (
f `  x )  =  y  ->  E. x  e.  A  ph ) )
4337, 42sylbid 207 . . . . 5  |-  ( ( f : A --> B  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph )  ->  ( y  e.  ran  f  ->  E. x  e.  A  ph ) )
4434, 43ralrimi 2779 . . . 4  |-  ( ( f : A --> B  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph )  ->  A. y  e.  ran  f E. x  e.  A  ph )
455rnex 5125 . . . . 5  |-  ran  f  e.  _V
46 breq1 4207 . . . . . . 7  |-  ( c  =  ran  f  -> 
( c  ~<_  A  <->  ran  f  ~<_  A ) )
47 sseq1 3361 . . . . . . 7  |-  ( c  =  ran  f  -> 
( c  C_  B  <->  ran  f  C_  B )
)
4846, 47anbi12d 692 . . . . . 6  |-  ( c  =  ran  f  -> 
( ( c  ~<_  A  /\  c  C_  B
)  <->  ( ran  f  ~<_  A  /\  ran  f  C_  B ) ) )
49 rexeq 2897 . . . . . . . 8  |-  ( c  =  ran  f  -> 
( E. y  e.  c  ph  <->  E. y  e.  ran  f ph )
)
5049ralbidv 2717 . . . . . . 7  |-  ( c  =  ran  f  -> 
( A. x  e.  A  E. y  e.  c  ph  <->  A. x  e.  A  E. y  e.  ran  f ph )
)
51 raleq 2896 . . . . . . 7  |-  ( c  =  ran  f  -> 
( A. y  e.  c  E. x  e.  A  ph  <->  A. y  e.  ran  f E. x  e.  A  ph ) )
5250, 51anbi12d 692 . . . . . 6  |-  ( c  =  ran  f  -> 
( ( A. x  e.  A  E. y  e.  c  ph  /\  A. y  e.  c  E. x  e.  A  ph )  <->  ( A. x  e.  A  E. y  e.  ran  f ph  /\  A. y  e.  ran  f E. x  e.  A  ph ) ) )
5348, 52anbi12d 692 . . . . 5  |-  ( c  =  ran  f  -> 
( ( ( c  ~<_  A  /\  c  C_  B )  /\  ( A. x  e.  A  E. y  e.  c  ph  /\  A. y  e.  c  E. x  e.  A  ph ) )  <-> 
( ( ran  f  ~<_  A  /\  ran  f  C_  B )  /\  ( A. x  e.  A  E. y  e.  ran  f ph  /\  A. y  e.  ran  f E. x  e.  A  ph ) ) ) )
5445, 53spcev 3035 . . . 4  |-  ( ( ( ran  f  ~<_  A  /\  ran  f  C_  B )  /\  ( A. x  e.  A  E. y  e.  ran  f ph  /\  A. y  e.  ran  f E. x  e.  A  ph ) )  ->  E. c ( ( c  ~<_  A  /\  c  C_  B )  /\  ( A. x  e.  A  E. y  e.  c  ph  /\  A. y  e.  c  E. x  e.  A  ph ) ) )
5511, 13, 30, 44, 54syl22anc 1185 . . 3  |-  ( ( f : A --> B  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph )  ->  E. c
( ( c  ~<_  A  /\  c  C_  B
)  /\  ( A. x  e.  A  E. y  e.  c  ph  /\ 
A. y  e.  c  E. x  e.  A  ph ) ) )
5655exlimiv 1644 . 2  |-  ( E. f ( f : A --> B  /\  A. x  e.  A  [. (
f `  x )  /  y ]. ph )  ->  E. c ( ( c  ~<_  A  /\  c  C_  B )  /\  ( A. x  e.  A  E. y  e.  c  ph  /\  A. y  e.  c  E. x  e.  A  ph ) ) )
573, 56syl 16 1  |-  ( ( A  e.  M  /\  A. x  e.  A  E. y  e.  B  ph )  ->  E. c ( ( c  ~<_  A  /\  c  C_  B )  /\  ( A. x  e.  A  E. y  e.  c  ph  /\  A. y  e.  c  E. x  e.  A  ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725   A.wral 2697   E.wrex 2698   _Vcvv 2948   [.wsbc 3153    C_ wss 3312   class class class wbr 4204   dom cdm 4870   ran crn 4871   Fun wfun 5440    Fn wfn 5441   -->wf 5442   ` cfv 5446    ~<_ cdom 7099
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-reg 7552  ax-inf2 7588  ax-ac2 8335
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-r1 7682  df-rank 7683  df-card 7818  df-acn 7821  df-ac 7989
  Copyright terms: Public domain W3C validator