MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indexfi Unicode version

Theorem indexfi 7163
Description: If for every element of a finite indexing set  A there exists a corresponding element of another set  B, then there exists a finite subset of  B consisting only of those elements which are indexed by  A. Proven without the Axiom of Choice, unlike indexdom 26413. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
indexfi  |-  ( ( A  e.  Fin  /\  B  e.  M  /\  A. x  e.  A  E. y  e.  B  ph )  ->  E. c  e.  Fin  ( c  C_  B  /\  A. x  e.  A  E. y  e.  c  ph  /\  A. y  e.  c  E. x  e.  A  ph ) )
Distinct variable groups:    x, c,
y, A    B, c, x, y    ph, c
Allowed substitution hints:    ph( x, y)    M( x, y, c)

Proof of Theorem indexfi
Dummy variables  f  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1605 . . . . . 6  |-  F/ z
ph
2 nfsbc1v 3010 . . . . . 6  |-  F/ y
[. z  /  y ]. ph
3 sbceq1a 3001 . . . . . 6  |-  ( y  =  z  ->  ( ph 
<-> 
[. z  /  y ]. ph ) )
41, 2, 3cbvrex 2761 . . . . 5  |-  ( E. y  e.  B  ph  <->  E. z  e.  B  [. z  /  y ]. ph )
54ralbii 2567 . . . 4  |-  ( A. x  e.  A  E. y  e.  B  ph  <->  A. x  e.  A  E. z  e.  B  [. z  / 
y ]. ph )
6 dfsbcq 2993 . . . . 5  |-  ( z  =  ( f `  x )  ->  ( [. z  /  y ]. ph  <->  [. ( f `  x )  /  y ]. ph ) )
76ac6sfi 7101 . . . 4  |-  ( ( A  e.  Fin  /\  A. x  e.  A  E. z  e.  B  [. z  /  y ]. ph )  ->  E. f ( f : A --> B  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph ) )
85, 7sylan2b 461 . . 3  |-  ( ( A  e.  Fin  /\  A. x  e.  A  E. y  e.  B  ph )  ->  E. f ( f : A --> B  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph ) )
9 simpll 730 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\ 
A. x  e.  A  E. y  e.  B  ph )  /\  ( f : A --> B  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph ) )  ->  A  e.  Fin )
10 ffn 5389 . . . . . . . . 9  |-  ( f : A --> B  -> 
f  Fn  A )
1110ad2antrl 708 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\ 
A. x  e.  A  E. y  e.  B  ph )  /\  ( f : A --> B  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph ) )  ->  f  Fn  A )
12 dffn4 5457 . . . . . . . 8  |-  ( f  Fn  A  <->  f : A -onto-> ran  f )
1311, 12sylib 188 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\ 
A. x  e.  A  E. y  e.  B  ph )  /\  ( f : A --> B  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph ) )  ->  f : A -onto-> ran  f )
14 fofi 7142 . . . . . . 7  |-  ( ( A  e.  Fin  /\  f : A -onto-> ran  f
)  ->  ran  f  e. 
Fin )
159, 13, 14syl2anc 642 . . . . . 6  |-  ( ( ( A  e.  Fin  /\ 
A. x  e.  A  E. y  e.  B  ph )  /\  ( f : A --> B  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph ) )  ->  ran  f  e.  Fin )
16 frn 5395 . . . . . . 7  |-  ( f : A --> B  ->  ran  f  C_  B )
1716ad2antrl 708 . . . . . 6  |-  ( ( ( A  e.  Fin  /\ 
A. x  e.  A  E. y  e.  B  ph )  /\  ( f : A --> B  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph ) )  ->  ran  f  C_  B )
18 fnfvelrn 5662 . . . . . . . . . . 11  |-  ( ( f  Fn  A  /\  x  e.  A )  ->  ( f `  x
)  e.  ran  f
)
1910, 18sylan 457 . . . . . . . . . 10  |-  ( ( f : A --> B  /\  x  e.  A )  ->  ( f `  x
)  e.  ran  f
)
20 rspesbca 3071 . . . . . . . . . . 11  |-  ( ( ( f `  x
)  e.  ran  f  /\  [. ( f `  x )  /  y ]. ph )  ->  E. y  e.  ran  f ph )
2120ex 423 . . . . . . . . . 10  |-  ( ( f `  x )  e.  ran  f  -> 
( [. ( f `  x )  /  y ]. ph  ->  E. y  e.  ran  f ph )
)
2219, 21syl 15 . . . . . . . . 9  |-  ( ( f : A --> B  /\  x  e.  A )  ->  ( [. ( f `
 x )  / 
y ]. ph  ->  E. y  e.  ran  f ph )
)
2322ralimdva 2621 . . . . . . . 8  |-  ( f : A --> B  -> 
( A. x  e.  A  [. ( f `
 x )  / 
y ]. ph  ->  A. x  e.  A  E. y  e.  ran  f ph )
)
2423imp 418 . . . . . . 7  |-  ( ( f : A --> B  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph )  ->  A. x  e.  A  E. y  e.  ran  f ph )
2524adantl 452 . . . . . 6  |-  ( ( ( A  e.  Fin  /\ 
A. x  e.  A  E. y  e.  B  ph )  /\  ( f : A --> B  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph ) )  ->  A. x  e.  A  E. y  e.  ran  f ph )
26 simpr 447 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
Fin  /\  A. x  e.  A  E. y  e.  B  ph )  /\  ( f : A --> B  /\  A. x  e.  A  [. ( f `
 x )  / 
y ]. ph ) )  /\  w  e.  A
)  ->  w  e.  A )
27 simprr 733 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Fin  /\ 
A. x  e.  A  E. y  e.  B  ph )  /\  ( f : A --> B  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph ) )  ->  A. x  e.  A  [. ( f `
 x )  / 
y ]. ph )
28 nfv 1605 . . . . . . . . . . . . 13  |-  F/ w [. ( f `  x
)  /  y ]. ph
29 nfsbc1v 3010 . . . . . . . . . . . . 13  |-  F/ x [. w  /  x ]. [. ( f `  w )  /  y ]. ph
30 fveq2 5525 . . . . . . . . . . . . . . 15  |-  ( x  =  w  ->  (
f `  x )  =  ( f `  w ) )
31 dfsbcq 2993 . . . . . . . . . . . . . . 15  |-  ( ( f `  x )  =  ( f `  w )  ->  ( [. ( f `  x
)  /  y ]. ph  <->  [. ( f `  w
)  /  y ]. ph ) )
3230, 31syl 15 . . . . . . . . . . . . . 14  |-  ( x  =  w  ->  ( [. ( f `  x
)  /  y ]. ph  <->  [. ( f `  w
)  /  y ]. ph ) )
33 sbceq1a 3001 . . . . . . . . . . . . . 14  |-  ( x  =  w  ->  ( [. ( f `  w
)  /  y ]. ph  <->  [. w  /  x ]. [. ( f `  w
)  /  y ]. ph ) )
3432, 33bitrd 244 . . . . . . . . . . . . 13  |-  ( x  =  w  ->  ( [. ( f `  x
)  /  y ]. ph  <->  [. w  /  x ]. [. ( f `  w
)  /  y ]. ph ) )
3528, 29, 34cbvral 2760 . . . . . . . . . . . 12  |-  ( A. x  e.  A  [. (
f `  x )  /  y ]. ph  <->  A. w  e.  A  [. w  /  x ]. [. ( f `
 w )  / 
y ]. ph )
3627, 35sylib 188 . . . . . . . . . . 11  |-  ( ( ( A  e.  Fin  /\ 
A. x  e.  A  E. y  e.  B  ph )  /\  ( f : A --> B  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph ) )  ->  A. w  e.  A  [. w  /  x ]. [. ( f `
 w )  / 
y ]. ph )
3736r19.21bi 2641 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
Fin  /\  A. x  e.  A  E. y  e.  B  ph )  /\  ( f : A --> B  /\  A. x  e.  A  [. ( f `
 x )  / 
y ]. ph ) )  /\  w  e.  A
)  ->  [. w  /  x ]. [. ( f `
 w )  / 
y ]. ph )
38 rspesbca 3071 . . . . . . . . . 10  |-  ( ( w  e.  A  /\  [. w  /  x ]. [. ( f `  w
)  /  y ]. ph )  ->  E. x  e.  A  [. ( f `
 w )  / 
y ]. ph )
3926, 37, 38syl2anc 642 . . . . . . . . 9  |-  ( ( ( ( A  e. 
Fin  /\  A. x  e.  A  E. y  e.  B  ph )  /\  ( f : A --> B  /\  A. x  e.  A  [. ( f `
 x )  / 
y ]. ph ) )  /\  w  e.  A
)  ->  E. x  e.  A  [. ( f `
 w )  / 
y ]. ph )
4039ralrimiva 2626 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\ 
A. x  e.  A  E. y  e.  B  ph )  /\  ( f : A --> B  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph ) )  ->  A. w  e.  A  E. x  e.  A  [. ( f `
 w )  / 
y ]. ph )
41 dfsbcq 2993 . . . . . . . . . . 11  |-  ( z  =  ( f `  w )  ->  ( [. z  /  y ]. ph  <->  [. ( f `  w )  /  y ]. ph ) )
4241rexbidv 2564 . . . . . . . . . 10  |-  ( z  =  ( f `  w )  ->  ( E. x  e.  A  [. z  /  y ]. ph  <->  E. x  e.  A  [. ( f `  w
)  /  y ]. ph ) )
4342ralrn 5668 . . . . . . . . 9  |-  ( f  Fn  A  ->  ( A. z  e.  ran  f E. x  e.  A  [. z  /  y ]. ph  <->  A. w  e.  A  E. x  e.  A  [. (
f `  w )  /  y ]. ph )
)
4411, 43syl 15 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\ 
A. x  e.  A  E. y  e.  B  ph )  /\  ( f : A --> B  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph ) )  ->  ( A. z  e.  ran  f E. x  e.  A  [. z  /  y ]. ph  <->  A. w  e.  A  E. x  e.  A  [. (
f `  w )  /  y ]. ph )
)
4540, 44mpbird 223 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\ 
A. x  e.  A  E. y  e.  B  ph )  /\  ( f : A --> B  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph ) )  ->  A. z  e.  ran  f E. x  e.  A  [. z  / 
y ]. ph )
46 nfv 1605 . . . . . . . 8  |-  F/ z E. x  e.  A  ph
47 nfcv 2419 . . . . . . . . 9  |-  F/_ y A
4847, 2nfrex 2598 . . . . . . . 8  |-  F/ y E. x  e.  A  [. z  /  y ]. ph
493rexbidv 2564 . . . . . . . 8  |-  ( y  =  z  ->  ( E. x  e.  A  ph  <->  E. x  e.  A  [. z  /  y ]. ph )
)
5046, 48, 49cbvral 2760 . . . . . . 7  |-  ( A. y  e.  ran  f E. x  e.  A  ph  <->  A. z  e.  ran  f E. x  e.  A  [. z  /  y ]. ph )
5145, 50sylibr 203 . . . . . 6  |-  ( ( ( A  e.  Fin  /\ 
A. x  e.  A  E. y  e.  B  ph )  /\  ( f : A --> B  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph ) )  ->  A. y  e.  ran  f E. x  e.  A  ph )
52 sseq1 3199 . . . . . . . 8  |-  ( c  =  ran  f  -> 
( c  C_  B  <->  ran  f  C_  B )
)
53 rexeq 2737 . . . . . . . . 9  |-  ( c  =  ran  f  -> 
( E. y  e.  c  ph  <->  E. y  e.  ran  f ph )
)
5453ralbidv 2563 . . . . . . . 8  |-  ( c  =  ran  f  -> 
( A. x  e.  A  E. y  e.  c  ph  <->  A. x  e.  A  E. y  e.  ran  f ph )
)
55 raleq 2736 . . . . . . . 8  |-  ( c  =  ran  f  -> 
( A. y  e.  c  E. x  e.  A  ph  <->  A. y  e.  ran  f E. x  e.  A  ph ) )
5652, 54, 553anbi123d 1252 . . . . . . 7  |-  ( c  =  ran  f  -> 
( ( c  C_  B  /\  A. x  e.  A  E. y  e.  c  ph  /\  A. y  e.  c  E. x  e.  A  ph )  <->  ( ran  f  C_  B  /\  A. x  e.  A  E. y  e.  ran  f ph  /\  A. y  e.  ran  f E. x  e.  A  ph ) ) )
5756rspcev 2884 . . . . . 6  |-  ( ( ran  f  e.  Fin  /\  ( ran  f  C_  B  /\  A. x  e.  A  E. y  e. 
ran  f ph  /\  A. y  e.  ran  f E. x  e.  A  ph ) )  ->  E. c  e.  Fin  ( c  C_  B  /\  A. x  e.  A  E. y  e.  c  ph  /\  A. y  e.  c  E. x  e.  A  ph )
)
5815, 17, 25, 51, 57syl13anc 1184 . . . . 5  |-  ( ( ( A  e.  Fin  /\ 
A. x  e.  A  E. y  e.  B  ph )  /\  ( f : A --> B  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph ) )  ->  E. c  e.  Fin  ( c  C_  B  /\  A. x  e.  A  E. y  e.  c  ph  /\  A. y  e.  c  E. x  e.  A  ph )
)
5958ex 423 . . . 4  |-  ( ( A  e.  Fin  /\  A. x  e.  A  E. y  e.  B  ph )  ->  ( ( f : A --> B  /\  A. x  e.  A  [. (
f `  x )  /  y ]. ph )  ->  E. c  e.  Fin  ( c  C_  B  /\  A. x  e.  A  E. y  e.  c  ph  /\  A. y  e.  c  E. x  e.  A  ph ) ) )
6059exlimdv 1664 . . 3  |-  ( ( A  e.  Fin  /\  A. x  e.  A  E. y  e.  B  ph )  ->  ( E. f ( f : A --> B  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph )  ->  E. c  e.  Fin  ( c  C_  B  /\  A. x  e.  A  E. y  e.  c  ph  /\  A. y  e.  c  E. x  e.  A  ph )
) )
618, 60mpd 14 . 2  |-  ( ( A  e.  Fin  /\  A. x  e.  A  E. y  e.  B  ph )  ->  E. c  e.  Fin  ( c  C_  B  /\  A. x  e.  A  E. y  e.  c  ph  /\  A. y  e.  c  E. x  e.  A  ph ) )
62613adant2 974 1  |-  ( ( A  e.  Fin  /\  B  e.  M  /\  A. x  e.  A  E. y  e.  B  ph )  ->  E. c  e.  Fin  ( c  C_  B  /\  A. x  e.  A  E. y  e.  c  ph  /\  A. y  e.  c  E. x  e.  A  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   E.wex 1528    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   [.wsbc 2991    C_ wss 3152   ran crn 4690    Fn wfn 5250   -->wf 5251   -onto->wfo 5253   ` cfv 5255   Fincfn 6863
This theorem is referenced by:  indexfiOLD  26414  filbcmb  26432
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1o 6479  df-er 6660  df-en 6864  df-dom 6865  df-fin 6867
  Copyright terms: Public domain W3C validator