Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  indif Unicode version

Theorem indif 3411
 Description: Intersection with class difference. Theorem 34 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
indif

Proof of Theorem indif
StepHypRef Expression
1 dfin4 3409 . 2
2 dfin4 3409 . . 3
32difeq2i 3291 . 2
4 difin 3406 . 2
51, 3, 43eqtr2i 2309 1
 Colors of variables: wff set class Syntax hints:   wceq 1623   cdif 3149   cin 3151 This theorem is referenced by:  resdif  5494  kmlem11  7786 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rab 2552  df-v 2790  df-dif 3155  df-in 3159  df-ss 3166
 Copyright terms: Public domain W3C validator