MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indif2 Structured version   Unicode version

Theorem indif2 3576
Description: Bring an intersection in and out of a class difference. (Contributed by Jeff Hankins, 15-Jul-2009.)
Assertion
Ref Expression
indif2  |-  ( A  i^i  ( B  \  C ) )  =  ( ( A  i^i  B )  \  C )

Proof of Theorem indif2
StepHypRef Expression
1 inass 3543 . 2  |-  ( ( A  i^i  B )  i^i  ( _V  \  C ) )  =  ( A  i^i  ( B  i^i  ( _V  \  C ) ) )
2 invdif 3574 . 2  |-  ( ( A  i^i  B )  i^i  ( _V  \  C ) )  =  ( ( A  i^i  B )  \  C )
3 invdif 3574 . . 3  |-  ( B  i^i  ( _V  \  C ) )  =  ( B  \  C
)
43ineq2i 3531 . 2  |-  ( A  i^i  ( B  i^i  ( _V  \  C ) ) )  =  ( A  i^i  ( B 
\  C ) )
51, 2, 43eqtr3ri 2464 1  |-  ( A  i^i  ( B  \  C ) )  =  ( ( A  i^i  B )  \  C )
Colors of variables: wff set class
Syntax hints:    = wceq 1652   _Vcvv 2948    \ cdif 3309    i^i cin 3311
This theorem is referenced by:  indif1  3577  indifcom  3578  marypha1lem  7430  difopn  17090  restcld  17228  difmbl  19429  voliunlem1  19436  imadifxp  24030  probdif  24670  wfi  25474  frind  25510  mblfinlem2  26235  mblfinlem3  26236  topbnd  26318
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-rab 2706  df-v 2950  df-dif 3315  df-in 3319
  Copyright terms: Public domain W3C validator