MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indifdir Structured version   Unicode version

Theorem indifdir 3599
Description: Distribute intersection over difference. (Contributed by Scott Fenton, 14-Apr-2011.)
Assertion
Ref Expression
indifdir  |-  ( ( A  \  B )  i^i  C )  =  ( ( A  i^i  C )  \  ( B  i^i  C ) )

Proof of Theorem indifdir
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 pm3.24 854 . . . . . . . 8  |-  -.  (
x  e.  C  /\  -.  x  e.  C
)
21intnan 882 . . . . . . 7  |-  -.  (
x  e.  A  /\  ( x  e.  C  /\  -.  x  e.  C
) )
3 anass 632 . . . . . . 7  |-  ( ( ( x  e.  A  /\  x  e.  C
)  /\  -.  x  e.  C )  <->  ( x  e.  A  /\  (
x  e.  C  /\  -.  x  e.  C
) ) )
42, 3mtbir 292 . . . . . 6  |-  -.  (
( x  e.  A  /\  x  e.  C
)  /\  -.  x  e.  C )
54biorfi 398 . . . . 5  |-  ( ( ( x  e.  A  /\  x  e.  C
)  /\  -.  x  e.  B )  <->  ( (
( x  e.  A  /\  x  e.  C
)  /\  -.  x  e.  B )  \/  (
( x  e.  A  /\  x  e.  C
)  /\  -.  x  e.  C ) ) )
6 an32 775 . . . . 5  |-  ( ( ( x  e.  A  /\  -.  x  e.  B
)  /\  x  e.  C )  <->  ( (
x  e.  A  /\  x  e.  C )  /\  -.  x  e.  B
) )
7 andi 839 . . . . 5  |-  ( ( ( x  e.  A  /\  x  e.  C
)  /\  ( -.  x  e.  B  \/  -.  x  e.  C
) )  <->  ( (
( x  e.  A  /\  x  e.  C
)  /\  -.  x  e.  B )  \/  (
( x  e.  A  /\  x  e.  C
)  /\  -.  x  e.  C ) ) )
85, 6, 73bitr4i 270 . . . 4  |-  ( ( ( x  e.  A  /\  -.  x  e.  B
)  /\  x  e.  C )  <->  ( (
x  e.  A  /\  x  e.  C )  /\  ( -.  x  e.  B  \/  -.  x  e.  C ) ) )
9 ianor 476 . . . . 5  |-  ( -.  ( x  e.  B  /\  x  e.  C
)  <->  ( -.  x  e.  B  \/  -.  x  e.  C )
)
109anbi2i 677 . . . 4  |-  ( ( ( x  e.  A  /\  x  e.  C
)  /\  -.  (
x  e.  B  /\  x  e.  C )
)  <->  ( ( x  e.  A  /\  x  e.  C )  /\  ( -.  x  e.  B  \/  -.  x  e.  C
) ) )
118, 10bitr4i 245 . . 3  |-  ( ( ( x  e.  A  /\  -.  x  e.  B
)  /\  x  e.  C )  <->  ( (
x  e.  A  /\  x  e.  C )  /\  -.  ( x  e.  B  /\  x  e.  C ) ) )
12 elin 3532 . . . 4  |-  ( x  e.  ( ( A 
\  B )  i^i 
C )  <->  ( x  e.  ( A  \  B
)  /\  x  e.  C ) )
13 eldif 3332 . . . . 5  |-  ( x  e.  ( A  \  B )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
1413anbi1i 678 . . . 4  |-  ( ( x  e.  ( A 
\  B )  /\  x  e.  C )  <->  ( ( x  e.  A  /\  -.  x  e.  B
)  /\  x  e.  C ) )
1512, 14bitri 242 . . 3  |-  ( x  e.  ( ( A 
\  B )  i^i 
C )  <->  ( (
x  e.  A  /\  -.  x  e.  B
)  /\  x  e.  C ) )
16 eldif 3332 . . . 4  |-  ( x  e.  ( ( A  i^i  C )  \ 
( B  i^i  C
) )  <->  ( x  e.  ( A  i^i  C
)  /\  -.  x  e.  ( B  i^i  C
) ) )
17 elin 3532 . . . . 5  |-  ( x  e.  ( A  i^i  C )  <->  ( x  e.  A  /\  x  e.  C ) )
18 elin 3532 . . . . . 6  |-  ( x  e.  ( B  i^i  C )  <->  ( x  e.  B  /\  x  e.  C ) )
1918notbii 289 . . . . 5  |-  ( -.  x  e.  ( B  i^i  C )  <->  -.  (
x  e.  B  /\  x  e.  C )
)
2017, 19anbi12i 680 . . . 4  |-  ( ( x  e.  ( A  i^i  C )  /\  -.  x  e.  ( B  i^i  C ) )  <-> 
( ( x  e.  A  /\  x  e.  C )  /\  -.  ( x  e.  B  /\  x  e.  C
) ) )
2116, 20bitri 242 . . 3  |-  ( x  e.  ( ( A  i^i  C )  \ 
( B  i^i  C
) )  <->  ( (
x  e.  A  /\  x  e.  C )  /\  -.  ( x  e.  B  /\  x  e.  C ) ) )
2211, 15, 213bitr4i 270 . 2  |-  ( x  e.  ( ( A 
\  B )  i^i 
C )  <->  x  e.  ( ( A  i^i  C )  \  ( B  i^i  C ) ) )
2322eqriv 2435 1  |-  ( ( A  \  B )  i^i  C )  =  ( ( A  i^i  C )  \  ( B  i^i  C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    \/ wo 359    /\ wa 360    = wceq 1653    e. wcel 1726    \ cdif 3319    i^i cin 3321
This theorem is referenced by:  fresaun  5616  uniioombllem4  19480  preddif  25468
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-v 2960  df-dif 3325  df-in 3329
  Copyright terms: Public domain W3C validator