MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indislem Unicode version

Theorem indislem 16954
Description: A lemma to eliminate some sethood hypotheses when dealing with the indiscrete topology. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
indislem  |-  { (/) ,  (  _I  `  A
) }  =  { (/)
,  A }

Proof of Theorem indislem
StepHypRef Expression
1 fvi 5686 . . 3  |-  ( A  e.  _V  ->  (  _I  `  A )  =  A )
21preq2d 3805 . 2  |-  ( A  e.  _V  ->  { (/) ,  (  _I  `  A
) }  =  { (/)
,  A } )
3 dfsn2 3743 . . . 4  |-  { (/) }  =  { (/) ,  (/) }
43eqcomi 2370 . . 3  |-  { (/) ,  (/) }  =  { (/) }
5 fvprc 5626 . . . 4  |-  ( -.  A  e.  _V  ->  (  _I  `  A )  =  (/) )
65preq2d 3805 . . 3  |-  ( -.  A  e.  _V  ->  {
(/) ,  (  _I  `  A ) }  =  { (/) ,  (/) } )
7 prprc2 3830 . . 3  |-  ( -.  A  e.  _V  ->  {
(/) ,  A }  =  { (/) } )
84, 6, 73eqtr4a 2424 . 2  |-  ( -.  A  e.  _V  ->  {
(/) ,  (  _I  `  A ) }  =  { (/) ,  A }
)
92, 8pm2.61i 156 1  |-  { (/) ,  (  _I  `  A
) }  =  { (/)
,  A }
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1647    e. wcel 1715   _Vcvv 2873   (/)c0 3543   {csn 3729   {cpr 3730    _I cid 4407   ` cfv 5358
This theorem is referenced by:  indistop  16956  indisuni  16957  indiscld  17045  indiscon  17361  txindis  17545  hmphindis  17705
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-rab 2637  df-v 2875  df-sbc 3078  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-nul 3544  df-if 3655  df-sn 3735  df-pr 3736  df-op 3738  df-uni 3930  df-br 4126  df-opab 4180  df-id 4412  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-iota 5322  df-fun 5360  df-fv 5366
  Copyright terms: Public domain W3C validator