Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indispcon Structured version   Unicode version

Theorem indispcon 24913
Description: The indiscrete topology (or trivial topology) on any set is path-connected. (Contributed by Mario Carneiro, 7-Jul-2015.) (Revised by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
indispcon  |-  { (/) ,  A }  e. PCon

Proof of Theorem indispcon
Dummy variables  x  f  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 indistop 17058 . 2  |-  { (/) ,  A }  e.  Top
2 simpl 444 . . . . . . . . . 10  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  ->  x  e.  U. { (/) ,  A } )
3 0ex 4331 . . . . . . . . . . . 12  |-  (/)  e.  _V
4 n0i 3625 . . . . . . . . . . . . . 14  |-  ( x  e.  U. { (/) ,  A }  ->  -.  U. { (/) ,  A }  =  (/) )
5 prprc2 3907 . . . . . . . . . . . . . . . 16  |-  ( -.  A  e.  _V  ->  {
(/) ,  A }  =  { (/) } )
65unieqd 4018 . . . . . . . . . . . . . . 15  |-  ( -.  A  e.  _V  ->  U. { (/) ,  A }  =  U. { (/) } )
73unisn 4023 . . . . . . . . . . . . . . 15  |-  U. { (/)
}  =  (/)
86, 7syl6eq 2483 . . . . . . . . . . . . . 14  |-  ( -.  A  e.  _V  ->  U. { (/) ,  A }  =  (/) )
94, 8nsyl2 121 . . . . . . . . . . . . 13  |-  ( x  e.  U. { (/) ,  A }  ->  A  e.  _V )
109adantr 452 . . . . . . . . . . . 12  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  ->  A  e.  _V )
11 uniprg 4022 . . . . . . . . . . . 12  |-  ( (
(/)  e.  _V  /\  A  e.  _V )  ->  U. { (/)
,  A }  =  ( (/)  u.  A ) )
123, 10, 11sylancr 645 . . . . . . . . . . 11  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  ->  U. { (/) ,  A }  =  ( (/)  u.  A
) )
13 uncom 3483 . . . . . . . . . . . 12  |-  ( (/)  u.  A )  =  ( A  u.  (/) )
14 un0 3644 . . . . . . . . . . . 12  |-  ( A  u.  (/) )  =  A
1513, 14eqtri 2455 . . . . . . . . . . 11  |-  ( (/)  u.  A )  =  A
1612, 15syl6eq 2483 . . . . . . . . . 10  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  ->  U. { (/) ,  A }  =  A )
172, 16eleqtrd 2511 . . . . . . . . 9  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  ->  x  e.  A )
18 simpr 448 . . . . . . . . . 10  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  -> 
y  e.  U. { (/)
,  A } )
1918, 16eleqtrd 2511 . . . . . . . . 9  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  -> 
y  e.  A )
20 ifcl 3767 . . . . . . . . 9  |-  ( ( x  e.  A  /\  y  e.  A )  ->  if ( z  =  0 ,  x ,  y )  e.  A
)
2117, 19, 20syl2anc 643 . . . . . . . 8  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  ->  if ( z  =  0 ,  x ,  y )  e.  A )
2221adantr 452 . . . . . . 7  |-  ( ( ( x  e.  U. { (/) ,  A }  /\  y  e.  U. { (/)
,  A } )  /\  z  e.  ( 0 [,] 1 ) )  ->  if (
z  =  0 ,  x ,  y )  e.  A )
23 eqid 2435 . . . . . . 7  |-  ( z  e.  ( 0 [,] 1 )  |->  if ( z  =  0 ,  x ,  y ) )  =  ( z  e.  ( 0 [,] 1 )  |->  if ( z  =  0 ,  x ,  y ) )
2422, 23fmptd 5885 . . . . . 6  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  -> 
( z  e.  ( 0 [,] 1 ) 
|->  if ( z  =  0 ,  x ,  y ) ) : ( 0 [,] 1
) --> A )
25 ovex 6098 . . . . . . 7  |-  ( 0 [,] 1 )  e. 
_V
26 elmapg 7023 . . . . . . 7  |-  ( ( A  e.  _V  /\  ( 0 [,] 1
)  e.  _V )  ->  ( ( z  e.  ( 0 [,] 1
)  |->  if ( z  =  0 ,  x ,  y ) )  e.  ( A  ^m  ( 0 [,] 1
) )  <->  ( z  e.  ( 0 [,] 1
)  |->  if ( z  =  0 ,  x ,  y ) ) : ( 0 [,] 1 ) --> A ) )
2710, 25, 26sylancl 644 . . . . . 6  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  -> 
( ( z  e.  ( 0 [,] 1
)  |->  if ( z  =  0 ,  x ,  y ) )  e.  ( A  ^m  ( 0 [,] 1
) )  <->  ( z  e.  ( 0 [,] 1
)  |->  if ( z  =  0 ,  x ,  y ) ) : ( 0 [,] 1 ) --> A ) )
2824, 27mpbird 224 . . . . 5  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  -> 
( z  e.  ( 0 [,] 1 ) 
|->  if ( z  =  0 ,  x ,  y ) )  e.  ( A  ^m  (
0 [,] 1 ) ) )
29 iitopon 18901 . . . . . 6  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
30 cnindis 17348 . . . . . 6  |-  ( ( II  e.  (TopOn `  ( 0 [,] 1
) )  /\  A  e.  _V )  ->  (
II  Cn  { (/) ,  A } )  =  ( A  ^m  ( 0 [,] 1 ) ) )
3129, 10, 30sylancr 645 . . . . 5  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  -> 
( II  Cn  { (/)
,  A } )  =  ( A  ^m  ( 0 [,] 1
) ) )
3228, 31eleqtrrd 2512 . . . 4  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  -> 
( z  e.  ( 0 [,] 1 ) 
|->  if ( z  =  0 ,  x ,  y ) )  e.  ( II  Cn  { (/)
,  A } ) )
33 0elunit 11007 . . . . 5  |-  0  e.  ( 0 [,] 1
)
34 iftrue 3737 . . . . . 6  |-  ( z  =  0  ->  if ( z  =  0 ,  x ,  y )  =  x )
35 vex 2951 . . . . . 6  |-  x  e. 
_V
3634, 23, 35fvmpt 5798 . . . . 5  |-  ( 0  e.  ( 0 [,] 1 )  ->  (
( z  e.  ( 0 [,] 1 ) 
|->  if ( z  =  0 ,  x ,  y ) ) ` 
0 )  =  x )
3733, 36mp1i 12 . . . 4  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  -> 
( ( z  e.  ( 0 [,] 1
)  |->  if ( z  =  0 ,  x ,  y ) ) `
 0 )  =  x )
38 1elunit 11008 . . . . 5  |-  1  e.  ( 0 [,] 1
)
39 ax-1ne0 9051 . . . . . . . 8  |-  1  =/=  0
40 neeq1 2606 . . . . . . . 8  |-  ( z  =  1  ->  (
z  =/=  0  <->  1  =/=  0 ) )
4139, 40mpbiri 225 . . . . . . 7  |-  ( z  =  1  ->  z  =/=  0 )
42 ifnefalse 3739 . . . . . . 7  |-  ( z  =/=  0  ->  if ( z  =  0 ,  x ,  y )  =  y )
4341, 42syl 16 . . . . . 6  |-  ( z  =  1  ->  if ( z  =  0 ,  x ,  y )  =  y )
44 vex 2951 . . . . . 6  |-  y  e. 
_V
4543, 23, 44fvmpt 5798 . . . . 5  |-  ( 1  e.  ( 0 [,] 1 )  ->  (
( z  e.  ( 0 [,] 1 ) 
|->  if ( z  =  0 ,  x ,  y ) ) ` 
1 )  =  y )
4638, 45mp1i 12 . . . 4  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  -> 
( ( z  e.  ( 0 [,] 1
)  |->  if ( z  =  0 ,  x ,  y ) ) `
 1 )  =  y )
47 fveq1 5719 . . . . . . 7  |-  ( f  =  ( z  e.  ( 0 [,] 1
)  |->  if ( z  =  0 ,  x ,  y ) )  ->  ( f ` 
0 )  =  ( ( z  e.  ( 0 [,] 1 ) 
|->  if ( z  =  0 ,  x ,  y ) ) ` 
0 ) )
4847eqeq1d 2443 . . . . . 6  |-  ( f  =  ( z  e.  ( 0 [,] 1
)  |->  if ( z  =  0 ,  x ,  y ) )  ->  ( ( f `
 0 )  =  x  <->  ( ( z  e.  ( 0 [,] 1 )  |->  if ( z  =  0 ,  x ,  y ) ) `  0 )  =  x ) )
49 fveq1 5719 . . . . . . 7  |-  ( f  =  ( z  e.  ( 0 [,] 1
)  |->  if ( z  =  0 ,  x ,  y ) )  ->  ( f ` 
1 )  =  ( ( z  e.  ( 0 [,] 1 ) 
|->  if ( z  =  0 ,  x ,  y ) ) ` 
1 ) )
5049eqeq1d 2443 . . . . . 6  |-  ( f  =  ( z  e.  ( 0 [,] 1
)  |->  if ( z  =  0 ,  x ,  y ) )  ->  ( ( f `
 1 )  =  y  <->  ( ( z  e.  ( 0 [,] 1 )  |->  if ( z  =  0 ,  x ,  y ) ) `  1 )  =  y ) )
5148, 50anbi12d 692 . . . . 5  |-  ( f  =  ( z  e.  ( 0 [,] 1
)  |->  if ( z  =  0 ,  x ,  y ) )  ->  ( ( ( f `  0 )  =  x  /\  (
f `  1 )  =  y )  <->  ( (
( z  e.  ( 0 [,] 1 ) 
|->  if ( z  =  0 ,  x ,  y ) ) ` 
0 )  =  x  /\  ( ( z  e.  ( 0 [,] 1 )  |->  if ( z  =  0 ,  x ,  y ) ) `  1 )  =  y ) ) )
5251rspcev 3044 . . . 4  |-  ( ( ( z  e.  ( 0 [,] 1 ) 
|->  if ( z  =  0 ,  x ,  y ) )  e.  ( II  Cn  { (/)
,  A } )  /\  ( ( ( z  e.  ( 0 [,] 1 )  |->  if ( z  =  0 ,  x ,  y ) ) `  0
)  =  x  /\  ( ( z  e.  ( 0 [,] 1
)  |->  if ( z  =  0 ,  x ,  y ) ) `
 1 )  =  y ) )  ->  E. f  e.  (
II  Cn  { (/) ,  A } ) ( ( f `  0 )  =  x  /\  (
f `  1 )  =  y ) )
5332, 37, 46, 52syl12anc 1182 . . 3  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  ->  E. f  e.  (
II  Cn  { (/) ,  A } ) ( ( f `  0 )  =  x  /\  (
f `  1 )  =  y ) )
5453rgen2a 2764 . 2  |-  A. x  e.  U. { (/) ,  A } A. y  e.  U. { (/) ,  A } E. f  e.  (
II  Cn  { (/) ,  A } ) ( ( f `  0 )  =  x  /\  (
f `  1 )  =  y )
55 eqid 2435 . . 3  |-  U. { (/)
,  A }  =  U. { (/) ,  A }
5655ispcon 24902 . 2  |-  ( {
(/) ,  A }  e. PCon  <-> 
( { (/) ,  A }  e.  Top  /\  A. x  e.  U. { (/) ,  A } A. y  e.  U. { (/) ,  A } E. f  e.  ( II  Cn  { (/) ,  A } ) ( ( f `  0
)  =  x  /\  ( f `  1
)  =  y ) ) )
571, 54, 56mpbir2an 887 1  |-  { (/) ,  A }  e. PCon
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   E.wrex 2698   _Vcvv 2948    u. cun 3310   (/)c0 3620   ifcif 3731   {csn 3806   {cpr 3807   U.cuni 4007    e. cmpt 4258   -->wf 5442   ` cfv 5446  (class class class)co 6073    ^m cmap 7010   0cc0 8982   1c1 8983   [,]cicc 10911   Topctop 16950  TopOnctopon 16951    Cn ccn 17280   IIcii 18897  PConcpcon 24898
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-sup 7438  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-n0 10214  df-z 10275  df-uz 10481  df-q 10567  df-rp 10605  df-xneg 10702  df-xadd 10703  df-xmul 10704  df-icc 10915  df-seq 11316  df-exp 11375  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-topgen 13659  df-psmet 16686  df-xmet 16687  df-met 16688  df-bl 16689  df-mopn 16690  df-top 16955  df-bases 16957  df-topon 16958  df-cn 17283  df-ii 18899  df-pcon 24900
  Copyright terms: Public domain W3C validator