Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indispcon Unicode version

Theorem indispcon 23780
Description: The indiscrete topology (or trivial topology) on any set is path-connected. (Contributed by Mario Carneiro, 7-Jul-2015.) (Revised by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
indispcon  |-  { (/) ,  A }  e. PCon

Proof of Theorem indispcon
Dummy variables  x  f  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 indistop 16755 . 2  |-  { (/) ,  A }  e.  Top
2 simpl 443 . . . . . . . . . 10  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  ->  x  e.  U. { (/) ,  A } )
3 0ex 4166 . . . . . . . . . . . 12  |-  (/)  e.  _V
4 n0i 3473 . . . . . . . . . . . . . 14  |-  ( x  e.  U. { (/) ,  A }  ->  -.  U. { (/) ,  A }  =  (/) )
5 prprc2 3750 . . . . . . . . . . . . . . . 16  |-  ( -.  A  e.  _V  ->  {
(/) ,  A }  =  { (/) } )
65unieqd 3854 . . . . . . . . . . . . . . 15  |-  ( -.  A  e.  _V  ->  U. { (/) ,  A }  =  U. { (/) } )
73unisn 3859 . . . . . . . . . . . . . . 15  |-  U. { (/)
}  =  (/)
86, 7syl6eq 2344 . . . . . . . . . . . . . 14  |-  ( -.  A  e.  _V  ->  U. { (/) ,  A }  =  (/) )
94, 8nsyl2 119 . . . . . . . . . . . . 13  |-  ( x  e.  U. { (/) ,  A }  ->  A  e.  _V )
109adantr 451 . . . . . . . . . . . 12  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  ->  A  e.  _V )
11 uniprg 3858 . . . . . . . . . . . 12  |-  ( (
(/)  e.  _V  /\  A  e.  _V )  ->  U. { (/)
,  A }  =  ( (/)  u.  A ) )
123, 10, 11sylancr 644 . . . . . . . . . . 11  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  ->  U. { (/) ,  A }  =  ( (/)  u.  A
) )
13 uncom 3332 . . . . . . . . . . . 12  |-  ( (/)  u.  A )  =  ( A  u.  (/) )
14 un0 3492 . . . . . . . . . . . 12  |-  ( A  u.  (/) )  =  A
1513, 14eqtri 2316 . . . . . . . . . . 11  |-  ( (/)  u.  A )  =  A
1612, 15syl6eq 2344 . . . . . . . . . 10  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  ->  U. { (/) ,  A }  =  A )
172, 16eleqtrd 2372 . . . . . . . . 9  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  ->  x  e.  A )
18 simpr 447 . . . . . . . . . 10  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  -> 
y  e.  U. { (/)
,  A } )
1918, 16eleqtrd 2372 . . . . . . . . 9  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  -> 
y  e.  A )
20 ifcl 3614 . . . . . . . . 9  |-  ( ( x  e.  A  /\  y  e.  A )  ->  if ( z  =  0 ,  x ,  y )  e.  A
)
2117, 19, 20syl2anc 642 . . . . . . . 8  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  ->  if ( z  =  0 ,  x ,  y )  e.  A )
2221adantr 451 . . . . . . 7  |-  ( ( ( x  e.  U. { (/) ,  A }  /\  y  e.  U. { (/)
,  A } )  /\  z  e.  ( 0 [,] 1 ) )  ->  if (
z  =  0 ,  x ,  y )  e.  A )
23 eqid 2296 . . . . . . 7  |-  ( z  e.  ( 0 [,] 1 )  |->  if ( z  =  0 ,  x ,  y ) )  =  ( z  e.  ( 0 [,] 1 )  |->  if ( z  =  0 ,  x ,  y ) )
2422, 23fmptd 5700 . . . . . 6  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  -> 
( z  e.  ( 0 [,] 1 ) 
|->  if ( z  =  0 ,  x ,  y ) ) : ( 0 [,] 1
) --> A )
25 ovex 5899 . . . . . . 7  |-  ( 0 [,] 1 )  e. 
_V
26 elmapg 6801 . . . . . . 7  |-  ( ( A  e.  _V  /\  ( 0 [,] 1
)  e.  _V )  ->  ( ( z  e.  ( 0 [,] 1
)  |->  if ( z  =  0 ,  x ,  y ) )  e.  ( A  ^m  ( 0 [,] 1
) )  <->  ( z  e.  ( 0 [,] 1
)  |->  if ( z  =  0 ,  x ,  y ) ) : ( 0 [,] 1 ) --> A ) )
2710, 25, 26sylancl 643 . . . . . 6  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  -> 
( ( z  e.  ( 0 [,] 1
)  |->  if ( z  =  0 ,  x ,  y ) )  e.  ( A  ^m  ( 0 [,] 1
) )  <->  ( z  e.  ( 0 [,] 1
)  |->  if ( z  =  0 ,  x ,  y ) ) : ( 0 [,] 1 ) --> A ) )
2824, 27mpbird 223 . . . . 5  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  -> 
( z  e.  ( 0 [,] 1 ) 
|->  if ( z  =  0 ,  x ,  y ) )  e.  ( A  ^m  (
0 [,] 1 ) ) )
29 iitopon 18399 . . . . . 6  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
30 cnindis 17036 . . . . . 6  |-  ( ( II  e.  (TopOn `  ( 0 [,] 1
) )  /\  A  e.  _V )  ->  (
II  Cn  { (/) ,  A } )  =  ( A  ^m  ( 0 [,] 1 ) ) )
3129, 10, 30sylancr 644 . . . . 5  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  -> 
( II  Cn  { (/)
,  A } )  =  ( A  ^m  ( 0 [,] 1
) ) )
3228, 31eleqtrrd 2373 . . . 4  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  -> 
( z  e.  ( 0 [,] 1 ) 
|->  if ( z  =  0 ,  x ,  y ) )  e.  ( II  Cn  { (/)
,  A } ) )
33 0elunit 10770 . . . . 5  |-  0  e.  ( 0 [,] 1
)
34 iftrue 3584 . . . . . 6  |-  ( z  =  0  ->  if ( z  =  0 ,  x ,  y )  =  x )
35 vex 2804 . . . . . 6  |-  x  e. 
_V
3634, 23, 35fvmpt 5618 . . . . 5  |-  ( 0  e.  ( 0 [,] 1 )  ->  (
( z  e.  ( 0 [,] 1 ) 
|->  if ( z  =  0 ,  x ,  y ) ) ` 
0 )  =  x )
3733, 36mp1i 11 . . . 4  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  -> 
( ( z  e.  ( 0 [,] 1
)  |->  if ( z  =  0 ,  x ,  y ) ) `
 0 )  =  x )
38 1elunit 10771 . . . . 5  |-  1  e.  ( 0 [,] 1
)
39 ax-1ne0 8822 . . . . . . . 8  |-  1  =/=  0
40 neeq1 2467 . . . . . . . 8  |-  ( z  =  1  ->  (
z  =/=  0  <->  1  =/=  0 ) )
4139, 40mpbiri 224 . . . . . . 7  |-  ( z  =  1  ->  z  =/=  0 )
42 ifnefalse 3586 . . . . . . 7  |-  ( z  =/=  0  ->  if ( z  =  0 ,  x ,  y )  =  y )
4341, 42syl 15 . . . . . 6  |-  ( z  =  1  ->  if ( z  =  0 ,  x ,  y )  =  y )
44 vex 2804 . . . . . 6  |-  y  e. 
_V
4543, 23, 44fvmpt 5618 . . . . 5  |-  ( 1  e.  ( 0 [,] 1 )  ->  (
( z  e.  ( 0 [,] 1 ) 
|->  if ( z  =  0 ,  x ,  y ) ) ` 
1 )  =  y )
4638, 45mp1i 11 . . . 4  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  -> 
( ( z  e.  ( 0 [,] 1
)  |->  if ( z  =  0 ,  x ,  y ) ) `
 1 )  =  y )
47 fveq1 5540 . . . . . . 7  |-  ( f  =  ( z  e.  ( 0 [,] 1
)  |->  if ( z  =  0 ,  x ,  y ) )  ->  ( f ` 
0 )  =  ( ( z  e.  ( 0 [,] 1 ) 
|->  if ( z  =  0 ,  x ,  y ) ) ` 
0 ) )
4847eqeq1d 2304 . . . . . 6  |-  ( f  =  ( z  e.  ( 0 [,] 1
)  |->  if ( z  =  0 ,  x ,  y ) )  ->  ( ( f `
 0 )  =  x  <->  ( ( z  e.  ( 0 [,] 1 )  |->  if ( z  =  0 ,  x ,  y ) ) `  0 )  =  x ) )
49 fveq1 5540 . . . . . . 7  |-  ( f  =  ( z  e.  ( 0 [,] 1
)  |->  if ( z  =  0 ,  x ,  y ) )  ->  ( f ` 
1 )  =  ( ( z  e.  ( 0 [,] 1 ) 
|->  if ( z  =  0 ,  x ,  y ) ) ` 
1 ) )
5049eqeq1d 2304 . . . . . 6  |-  ( f  =  ( z  e.  ( 0 [,] 1
)  |->  if ( z  =  0 ,  x ,  y ) )  ->  ( ( f `
 1 )  =  y  <->  ( ( z  e.  ( 0 [,] 1 )  |->  if ( z  =  0 ,  x ,  y ) ) `  1 )  =  y ) )
5148, 50anbi12d 691 . . . . 5  |-  ( f  =  ( z  e.  ( 0 [,] 1
)  |->  if ( z  =  0 ,  x ,  y ) )  ->  ( ( ( f `  0 )  =  x  /\  (
f `  1 )  =  y )  <->  ( (
( z  e.  ( 0 [,] 1 ) 
|->  if ( z  =  0 ,  x ,  y ) ) ` 
0 )  =  x  /\  ( ( z  e.  ( 0 [,] 1 )  |->  if ( z  =  0 ,  x ,  y ) ) `  1 )  =  y ) ) )
5251rspcev 2897 . . . 4  |-  ( ( ( z  e.  ( 0 [,] 1 ) 
|->  if ( z  =  0 ,  x ,  y ) )  e.  ( II  Cn  { (/)
,  A } )  /\  ( ( ( z  e.  ( 0 [,] 1 )  |->  if ( z  =  0 ,  x ,  y ) ) `  0
)  =  x  /\  ( ( z  e.  ( 0 [,] 1
)  |->  if ( z  =  0 ,  x ,  y ) ) `
 1 )  =  y ) )  ->  E. f  e.  (
II  Cn  { (/) ,  A } ) ( ( f `  0 )  =  x  /\  (
f `  1 )  =  y ) )
5332, 37, 46, 52syl12anc 1180 . . 3  |-  ( ( x  e.  U. { (/)
,  A }  /\  y  e.  U. { (/) ,  A } )  ->  E. f  e.  (
II  Cn  { (/) ,  A } ) ( ( f `  0 )  =  x  /\  (
f `  1 )  =  y ) )
5453rgen2a 2622 . 2  |-  A. x  e.  U. { (/) ,  A } A. y  e.  U. { (/) ,  A } E. f  e.  (
II  Cn  { (/) ,  A } ) ( ( f `  0 )  =  x  /\  (
f `  1 )  =  y )
55 eqid 2296 . . 3  |-  U. { (/)
,  A }  =  U. { (/) ,  A }
5655ispcon 23769 . 2  |-  ( {
(/) ,  A }  e. PCon  <-> 
( { (/) ,  A }  e.  Top  /\  A. x  e.  U. { (/) ,  A } A. y  e.  U. { (/) ,  A } E. f  e.  ( II  Cn  { (/) ,  A } ) ( ( f `  0
)  =  x  /\  ( f `  1
)  =  y ) ) )
571, 54, 56mpbir2an 886 1  |-  { (/) ,  A }  e. PCon
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557   _Vcvv 2801    u. cun 3163   (/)c0 3468   ifcif 3578   {csn 3653   {cpr 3654   U.cuni 3843    e. cmpt 4093   -->wf 5267   ` cfv 5271  (class class class)co 5874    ^m cmap 6788   0cc0 8753   1c1 8754   [,]cicc 10675   Topctop 16647  TopOnctopon 16648    Cn ccn 16970   IIcii 18395  PConcpcon 23765
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-icc 10679  df-seq 11063  df-exp 11121  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-topgen 13360  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-top 16652  df-bases 16654  df-topon 16655  df-cn 16973  df-ii 18397  df-pcon 23767
  Copyright terms: Public domain W3C validator