MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indm Structured version   Unicode version

Theorem indm 3600
Description: De Morgan's law for intersection. Theorem 5.2(13') of [Stoll] p. 19. (Contributed by NM, 18-Aug-2004.)
Assertion
Ref Expression
indm  |-  ( _V 
\  ( A  i^i  B ) )  =  ( ( _V  \  A
)  u.  ( _V 
\  B ) )

Proof of Theorem indm
StepHypRef Expression
1 difindi 3595 1  |-  ( _V 
\  ( A  i^i  B ) )  =  ( ( _V  \  A
)  u.  ( _V 
\  B ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1652   _Vcvv 2956    \ cdif 3317    u. cun 3318    i^i cin 3319
This theorem is referenced by:  difdifdir  3715
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ral 2710  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327
  Copyright terms: Public domain W3C validator