Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inelsiga Unicode version

Theorem inelsiga 24315
Description: A sigma algebra is closed under set intersection. (Contributed by Thierry Arnoux, 13-Dec-2016.)
Assertion
Ref Expression
inelsiga  |-  ( ( S  e.  U. ran sigAlgebra  /\  A  e.  S  /\  B  e.  S )  ->  ( A  i^i  B
)  e.  S )

Proof of Theorem inelsiga
StepHypRef Expression
1 dfin4 3525 . 2  |-  ( A  i^i  B )  =  ( A  \  ( A  \  B ) )
2 difelsiga 24313 . . 3  |-  ( ( S  e.  U. ran sigAlgebra  /\  A  e.  S  /\  B  e.  S )  ->  ( A  \  B
)  e.  S )
3 difelsiga 24313 . . 3  |-  ( ( S  e.  U. ran sigAlgebra  /\  A  e.  S  /\  ( A  \  B )  e.  S )  -> 
( A  \  ( A  \  B ) )  e.  S )
42, 3syld3an3 1229 . 2  |-  ( ( S  e.  U. ran sigAlgebra  /\  A  e.  S  /\  B  e.  S )  ->  ( A  \  ( A  \  B ) )  e.  S )
51, 4syl5eqel 2472 1  |-  ( ( S  e.  U. ran sigAlgebra  /\  A  e.  S  /\  B  e.  S )  ->  ( A  i^i  B
)  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936    e. wcel 1717    \ cdif 3261    i^i cin 3263   U.cuni 3958   ran crn 4820  sigAlgebracsiga 24287
This theorem is referenced by:  measunl  24365  measinblem  24369  measinb  24370  mbfmco2  24410  sxbrsigalem2  24431  sxbrsiga  24435  probdif  24458  totprobd  24464  probmeasb  24468  cndprobin  24472  cndprob01  24473
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-inf2 7530  ax-ac2 8277
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-iin 4039  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-se 4484  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-isom 5404  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-1st 6289  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-1o 6661  df-2o 6662  df-oadd 6665  df-er 6842  df-map 6957  df-en 7047  df-dom 7048  df-sdom 7049  df-fin 7050  df-oi 7413  df-card 7760  df-acn 7763  df-ac 7931  df-cda 7982  df-siga 24288
  Copyright terms: Public domain W3C validator