Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf1 Unicode version

Theorem inf1 7323
 Description: Variation of Axiom of Infinity (using zfinf 7340 as a hypothesis). Axiom of Infinity in [FreydScedrov] p. 283. (Contributed by NM, 14-Oct-1996.) (Revised by David Abernethy, 1-Oct-2013.)
Hypothesis
Ref Expression
inf1.1
Assertion
Ref Expression
inf1

Proof of Theorem inf1
StepHypRef Expression
1 inf1.1 . 2
2 ne0i 3461 . . . 4
32anim1i 551 . . 3
43eximi 1563 . 2
51, 4ax-mp 8 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 358  wal 1527  wex 1528   wcel 1684   wne 2446  c0 3455 This theorem is referenced by:  inf2  7324 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-v 2790  df-dif 3155  df-nul 3456
 Copyright terms: Public domain W3C validator