MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf2 Unicode version

Theorem inf2 7340
Description: Variation of Axiom of Infinity. There exists a non-empty set that is a subset of its union (using zfinf 7356 as a hypothesis). Abbreviated version of the Axiom of Infinity in [FreydScedrov] p. 283. (Contributed by NM, 28-Oct-1996.)
Hypothesis
Ref Expression
inf1.1  |-  E. x
( y  e.  x  /\  A. y ( y  e.  x  ->  E. z
( y  e.  z  /\  z  e.  x
) ) )
Assertion
Ref Expression
inf2  |-  E. x
( x  =/=  (/)  /\  x  C_ 
U. x )
Distinct variable group:    x, y, z

Proof of Theorem inf2
StepHypRef Expression
1 inf1.1 . . 3  |-  E. x
( y  e.  x  /\  A. y ( y  e.  x  ->  E. z
( y  e.  z  /\  z  e.  x
) ) )
21inf1 7339 . 2  |-  E. x
( x  =/=  (/)  /\  A. y ( y  e.  x  ->  E. z
( y  e.  z  /\  z  e.  x
) ) )
3 dfss2 3182 . . . . 5  |-  ( x 
C_  U. x  <->  A. y
( y  e.  x  ->  y  e.  U. x
) )
4 eluni 3846 . . . . . . 7  |-  ( y  e.  U. x  <->  E. z
( y  e.  z  /\  z  e.  x
) )
54imbi2i 303 . . . . . 6  |-  ( ( y  e.  x  -> 
y  e.  U. x
)  <->  ( y  e.  x  ->  E. z
( y  e.  z  /\  z  e.  x
) ) )
65albii 1556 . . . . 5  |-  ( A. y ( y  e.  x  ->  y  e.  U. x )  <->  A. y
( y  e.  x  ->  E. z ( y  e.  z  /\  z  e.  x ) ) )
73, 6bitri 240 . . . 4  |-  ( x 
C_  U. x  <->  A. y
( y  e.  x  ->  E. z ( y  e.  z  /\  z  e.  x ) ) )
87anbi2i 675 . . 3  |-  ( ( x  =/=  (/)  /\  x  C_ 
U. x )  <->  ( x  =/=  (/)  /\  A. y
( y  e.  x  ->  E. z ( y  e.  z  /\  z  e.  x ) ) ) )
98exbii 1572 . 2  |-  ( E. x ( x  =/=  (/)  /\  x  C_  U. x
)  <->  E. x ( x  =/=  (/)  /\  A. y
( y  e.  x  ->  E. z ( y  e.  z  /\  z  e.  x ) ) ) )
102, 9mpbir 200 1  |-  E. x
( x  =/=  (/)  /\  x  C_ 
U. x )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   A.wal 1530   E.wex 1531    e. wcel 1696    =/= wne 2459    C_ wss 3165   (/)c0 3468   U.cuni 3843
This theorem is referenced by:  axinf2  7357
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-v 2803  df-dif 3168  df-in 3172  df-ss 3179  df-nul 3469  df-uni 3844
  Copyright terms: Public domain W3C validator