MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3 Unicode version

Theorem inf3 7523
Description: Our Axiom of Infinity ax-inf 7526 implies the standard Axiom of Infinity. The hypothesis is a variant of our Axiom of Infinity provided by inf2 7511, and the conclusion is the version of the Axiom of Infinity shown as Axiom 7 in [TakeutiZaring] p. 43. (Other standard versions are proved later as axinf2 7528 and zfinf2 7530.) The main proof is provided by inf3lema 7512 through inf3lem7 7522, and this final piece eliminates the auxiliary hypothesis of inf3lem7 7522. This proof is due to Ian Sutherland, Richard Heck, and Norman Megill and was posted on Usenet as shown below. Although the result is not new, the authors were unable to find a published proof.
       (As posted to sci.logic on 30-Oct-1996, with annotations added.)

       Theorem:  The statement "There exists a non-empty set that is a subset
       of its union" implies the Axiom of Infinity.

       Proof:  Let X be a nonempty set which is a subset of its union; the
       latter
       property is equivalent to saying that for any y in X, there exists a z
       in X
       such that y is in z.

       Define by finite recursion a function F:omega-->(power X) such that
       F_0 = 0  (See inf3lemb 7513.)
       F_n+1 = {y<X | y^X subset F_n}  (See inf3lemc 7514.)
       Note: ^ means intersect, < means \in ("element of").
       (Finite recursion as typically done requires the existence of omega;
       to avoid this we can just use transfinite recursion restricted to omega.
       F is a class-term that is not necessarily a set at this point.)

       Lemma 1.  F_n subset F_n+1.  (See inf3lem1 7516.)
       Proof:  By induction:  F_0 subset F_1.  If y < F_n+1, then y^X subset
       F_n,
       so if F_n subset F_n+1, then y^X subset F_n+1, so y < F_n+2.

       Lemma 2.  F_n =/= X.  (See inf3lem2 7517.)
       Proof:  By induction:  F_0 =/= X because X is not empty.  Assume F_n =/=
       X.
       Then there is a y in X that is not in F_n.  By definition of X, there is
       a
       z in X that contains y.  Suppose F_n+1 = X.  Then z is in F_n+1, and z^X
       contains y, so z^X is not a subset of F_n, contrary to the definition of
       F_n+1.

       Lemma 3.  F_n =/= F_n+1.  (See inf3lem3 7518.)
       Proof:  Using the identity y^X subset F_n <-> y^(X-F_n) = 0, we have
       F_n+1 = {y<X | y^(X-F_n) = 0}.  Let q = {y<X-F_n | y^(X-F_n) = 0}.
       Then q subset F_n+1.  Since X-F_n is not empty by Lemma 2 and q is the
       set of \in-minimal elements of X-F_n, by Foundation q is not empty, so q
       and therefore F_n+1 have an element not in F_n.

       Lemma 4.  F_n proper_subset F_n+1.  (See inf3lem4 7519.)
       Proof:  Lemmas 1 and 3.

       Lemma 5.  F_m proper_subset F_n, m < n.  (See inf3lem5 7520.)
       Proof:  Fix m and use induction on n > m.  Basis: F_m proper_subset
       F_m+1
       by Lemma 4.  Induction:  Assume F_m proper_subset F_n.  Then since F_n
       proper_subset F_n+1, F_m proper_subset F_n+1 by transitivity of proper
       subset.

       By Lemma 5, F_m =/= F_n for m =/= n, so F is 1-1.  (See inf3lem6 7521.)
       Thus, the inverse of F is a function with range omega and domain a
       subset
       of power X, so omega exists by Replacement.  (See inf3lem7 7522.)
       Q.E.D.
       
(Contributed by NM, 29-Oct-1996.)
Hypothesis
Ref Expression
inf3.1  |-  E. x
( x  =/=  (/)  /\  x  C_ 
U. x )
Assertion
Ref Expression
inf3  |-  om  e.  _V

Proof of Theorem inf3
Dummy variables  y  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inf3.1 . 2  |-  E. x
( x  =/=  (/)  /\  x  C_ 
U. x )
2 eqid 2387 . . . 4  |-  ( y  e.  _V  |->  { w  e.  x  |  (
w  i^i  x )  C_  y } )  =  ( y  e.  _V  |->  { w  e.  x  |  ( w  i^i  x )  C_  y } )
3 eqid 2387 . . . 4  |-  ( rec ( ( y  e. 
_V  |->  { w  e.  x  |  ( w  i^i  x )  C_  y } ) ,  (/) )  |`  om )  =  ( rec ( ( y  e.  _V  |->  { w  e.  x  |  ( w  i^i  x
)  C_  y }
) ,  (/) )  |`  om )
4 vex 2902 . . . 4  |-  x  e. 
_V
52, 3, 4, 4inf3lem7 7522 . . 3  |-  ( ( x  =/=  (/)  /\  x  C_ 
U. x )  ->  om  e.  _V )
65exlimiv 1641 . 2  |-  ( E. x ( x  =/=  (/)  /\  x  C_  U. x
)  ->  om  e.  _V )
71, 6ax-mp 8 1  |-  om  e.  _V
Colors of variables: wff set class
Syntax hints:    /\ wa 359   E.wex 1547    e. wcel 1717    =/= wne 2550   {crab 2653   _Vcvv 2899    i^i cin 3262    C_ wss 3263   (/)c0 3571   U.cuni 3957    e. cmpt 4207   omcom 4785    |` cres 4820   reccrdg 6603
This theorem is referenced by:  axinf2  7528
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-reg 7493
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-recs 6569  df-rdg 6604
  Copyright terms: Public domain W3C validator