MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3 Unicode version

Theorem inf3 7352
Description: Our Axiom of Infinity ax-inf 7355 implies the standard Axiom of Infinity. The hypothesis is a variant of our Axiom of Infinity provided by inf2 7340, and the conclusion is the version of the Axiom of Infinity shown as Axiom 7 in [TakeutiZaring] p. 43. (Other standard versions are proved later as axinf2 7357 and zfinf2 7359.) The main proof is provided by inf3lema 7341 through inf3lem7 7351, and this final piece eliminates the auxiliary hypothesis of inf3lem7 7351. This proof is due to Ian Sutherland, Richard Heck, and Norman Megill and was posted on Usenet as shown below. Although the result is not new, the authors were unable to find a published proof.
       (As posted to sci.logic on 30-Oct-1996, with annotations added.)

       Theorem:  The statement "There exists a non-empty set that is a subset
       of its union" implies the Axiom of Infinity.

       Proof:  Let X be a nonempty set which is a subset of its union; the
       latter
       property is equivalent to saying that for any y in X, there exists a z
       in X
       such that y is in z.

       Define by finite recursion a function F:omega-->(power X) such that
       F_0 = 0  (See inf3lemb 7342.)
       F_n+1 = {y<X | y^X subset F_n}  (See inf3lemc 7343.)
       Note: ^ means intersect, < means \in ("element of").
       (Finite recursion as typically done requires the existence of omega;
       to avoid this we can just use transfinite recursion restricted to omega.
       F is a class-term that is not necessarily a set at this point.)

       Lemma 1.  F_n subset F_n+1.  (See inf3lem1 7345.)
       Proof:  By induction:  F_0 subset F_1.  If y < F_n+1, then y^X subset
       F_n,
       so if F_n subset F_n+1, then y^X subset F_n+1, so y < F_n+2.

       Lemma 2.  F_n =/= X.  (See inf3lem2 7346.)
       Proof:  By induction:  F_0 =/= X because X is not empty.  Assume F_n =/=
       X.
       Then there is a y in X that is not in F_n.  By definition of X, there is
       a
       z in X that contains y.  Suppose F_n+1 = X.  Then z is in F_n+1, and z^X
       contains y, so z^X is not a subset of F_n, contrary to the definition of
       F_n+1.

       Lemma 3.  F_n =/= F_n+1.  (See inf3lem3 7347.)
       Proof:  Using the identity y^X subset F_n <-> y^(X-F_n) = 0, we have
       F_n+1 = {y<X | y^(X-F_n) = 0}.  Let q = {y<X-F_n | y^(X-F_n) = 0}.
       Then q subset F_n+1.  Since X-F_n is not empty by Lemma 2 and q is the
       set of \in-minimal elements of X-F_n, by Foundation q is not empty, so q
       and therefore F_n+1 have an element not in F_n.

       Lemma 4.  F_n proper_subset F_n+1.  (See inf3lem4 7348.)
       Proof:  Lemmas 1 and 3.

       Lemma 5.  F_m proper_subset F_n, m < n.  (See inf3lem5 7349.)
       Proof:  Fix m and use induction on n > m.  Basis: F_m proper_subset
       F_m+1
       by Lemma 4.  Induction:  Assume F_m proper_subset F_n.  Then since F_n
       proper_subset F_n+1, F_m proper_subset F_n+1 by transitivity of proper
       subset.

       By Lemma 5, F_m =/= F_n for m =/= n, so F is 1-1.  (See inf3lem6 7350.)
       Thus, the inverse of F is a function with range omega and domain a
       subset
       of power X, so omega exists by Replacement.  (See inf3lem7 7351.)
       Q.E.D.
       
(Contributed by NM, 29-Oct-1996.)
Hypothesis
Ref Expression
inf3.1  |-  E. x
( x  =/=  (/)  /\  x  C_ 
U. x )
Assertion
Ref Expression
inf3  |-  om  e.  _V

Proof of Theorem inf3
Dummy variables  y  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inf3.1 . 2  |-  E. x
( x  =/=  (/)  /\  x  C_ 
U. x )
2 eqid 2296 . . . 4  |-  ( y  e.  _V  |->  { w  e.  x  |  (
w  i^i  x )  C_  y } )  =  ( y  e.  _V  |->  { w  e.  x  |  ( w  i^i  x )  C_  y } )
3 eqid 2296 . . . 4  |-  ( rec ( ( y  e. 
_V  |->  { w  e.  x  |  ( w  i^i  x )  C_  y } ) ,  (/) )  |`  om )  =  ( rec ( ( y  e.  _V  |->  { w  e.  x  |  ( w  i^i  x
)  C_  y }
) ,  (/) )  |`  om )
4 vex 2804 . . . 4  |-  x  e. 
_V
52, 3, 4, 4inf3lem7 7351 . . 3  |-  ( ( x  =/=  (/)  /\  x  C_ 
U. x )  ->  om  e.  _V )
65exlimiv 1624 . 2  |-  ( E. x ( x  =/=  (/)  /\  x  C_  U. x
)  ->  om  e.  _V )
71, 6ax-mp 8 1  |-  om  e.  _V
Colors of variables: wff set class
Syntax hints:    /\ wa 358   E.wex 1531    e. wcel 1696    =/= wne 2459   {crab 2560   _Vcvv 2801    i^i cin 3164    C_ wss 3165   (/)c0 3468   U.cuni 3843    e. cmpt 4093   omcom 4672    |` cres 4707   reccrdg 6438
This theorem is referenced by:  axinf2  7357
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-reg 7322
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-recs 6404  df-rdg 6439
  Copyright terms: Public domain W3C validator