MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infcvgaux1i Structured version   Unicode version

Theorem infcvgaux1i 12641
Description: Auxiliary theorem for applications of supcvg 12640. Hypothesis for several supremum theorems. (Contributed by NM, 8-Feb-2008.)
Hypotheses
Ref Expression
infcvg.1  |-  R  =  { x  |  E. y  e.  X  x  =  -u A }
infcvg.2  |-  ( y  e.  X  ->  A  e.  RR )
infcvg.3  |-  Z  e.  X
infcvg.4  |-  E. z  e.  RR  A. w  e.  R  w  <_  z
Assertion
Ref Expression
infcvgaux1i  |-  ( R 
C_  RR  /\  R  =/=  (/)  /\  E. z  e.  RR  A. w  e.  R  w  <_  z
)
Distinct variable groups:    x, A    x, y    z, w, R   
x, X, y    x, Z, y
Allowed substitution hints:    A( y, z, w)    R( x, y)    X( z, w)    Z( z, w)

Proof of Theorem infcvgaux1i
StepHypRef Expression
1 infcvg.1 . . 3  |-  R  =  { x  |  E. y  e.  X  x  =  -u A }
2 infcvg.2 . . . . . . 7  |-  ( y  e.  X  ->  A  e.  RR )
32renegcld 9469 . . . . . 6  |-  ( y  e.  X  ->  -u A  e.  RR )
4 eleq1 2498 . . . . . 6  |-  ( x  =  -u A  ->  (
x  e.  RR  <->  -u A  e.  RR ) )
53, 4syl5ibrcom 215 . . . . 5  |-  ( y  e.  X  ->  (
x  =  -u A  ->  x  e.  RR ) )
65rexlimiv 2826 . . . 4  |-  ( E. y  e.  X  x  =  -u A  ->  x  e.  RR )
76abssi 3420 . . 3  |-  { x  |  E. y  e.  X  x  =  -u A }  C_  RR
81, 7eqsstri 3380 . 2  |-  R  C_  RR
9 infcvg.3 . . . . . 6  |-  Z  e.  X
10 eqid 2438 . . . . . 6  |-  -u [_ Z  /  y ]_ A  =  -u [_ Z  / 
y ]_ A
1110nfth 1563 . . . . . . 7  |-  F/ y
-u [_ Z  /  y ]_ A  =  -u [_ Z  /  y ]_ A
12 csbeq1a 3261 . . . . . . . . 9  |-  ( y  =  Z  ->  A  =  [_ Z  /  y ]_ A )
1312negeqd 9305 . . . . . . . 8  |-  ( y  =  Z  ->  -u A  =  -u [_ Z  / 
y ]_ A )
1413eqeq2d 2449 . . . . . . 7  |-  ( y  =  Z  ->  ( -u
[_ Z  /  y ]_ A  =  -u A  <->  -u
[_ Z  /  y ]_ A  =  -u [_ Z  /  y ]_ A
) )
1511, 14rspce 3049 . . . . . 6  |-  ( ( Z  e.  X  /\  -u
[_ Z  /  y ]_ A  =  -u [_ Z  /  y ]_ A
)  ->  E. y  e.  X  -u [_ Z  /  y ]_ A  =  -u A )
169, 10, 15mp2an 655 . . . . 5  |-  E. y  e.  X  -u [_ Z  /  y ]_ A  =  -u A
17 negex 9309 . . . . . 6  |-  -u [_ Z  /  y ]_ A  e.  _V
18 nfcsb1v 3285 . . . . . . . . 9  |-  F/_ y [_ Z  /  y ]_ A
1918nfneg 9307 . . . . . . . 8  |-  F/_ y -u
[_ Z  /  y ]_ A
2019nfeq2 2585 . . . . . . 7  |-  F/ y  x  =  -u [_ Z  /  y ]_ A
21 eqeq1 2444 . . . . . . 7  |-  ( x  =  -u [_ Z  / 
y ]_ A  ->  (
x  =  -u A  <->  -u
[_ Z  /  y ]_ A  =  -u A
) )
2220, 21rexbid 2726 . . . . . 6  |-  ( x  =  -u [_ Z  / 
y ]_ A  ->  ( E. y  e.  X  x  =  -u A  <->  E. y  e.  X  -u [_ Z  /  y ]_ A  =  -u A ) )
2317, 22elab 3084 . . . . 5  |-  ( -u [_ Z  /  y ]_ A  e.  { x  |  E. y  e.  X  x  =  -u A }  <->  E. y  e.  X  -u [_ Z  /  y ]_ A  =  -u A )
2416, 23mpbir 202 . . . 4  |-  -u [_ Z  /  y ]_ A  e.  { x  |  E. y  e.  X  x  =  -u A }
2524, 1eleqtrri 2511 . . 3  |-  -u [_ Z  /  y ]_ A  e.  R
26 ne0i 3636 . . 3  |-  ( -u [_ Z  /  y ]_ A  e.  R  ->  R  =/=  (/) )
2725, 26ax-mp 5 . 2  |-  R  =/=  (/)
28 infcvg.4 . 2  |-  E. z  e.  RR  A. w  e.  R  w  <_  z
298, 27, 283pm3.2i 1133 1  |-  ( R 
C_  RR  /\  R  =/=  (/)  /\  E. z  e.  RR  A. w  e.  R  w  <_  z
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 937    = wceq 1653    e. wcel 1726   {cab 2424    =/= wne 2601   A.wral 2707   E.wrex 2708   [_csb 3253    C_ wss 3322   (/)c0 3630   class class class wbr 4215   RRcr 8994    <_ cle 9126   -ucneg 9297
This theorem is referenced by:  infcvgaux2i  12642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-po 4506  df-so 4507  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-riota 6552  df-er 6908  df-en 7113  df-dom 7114  df-sdom 7115  df-pnf 9127  df-mnf 9128  df-ltxr 9130  df-sub 9298  df-neg 9299
  Copyright terms: Public domain W3C validator