MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infcvgaux2i Unicode version

Theorem infcvgaux2i 12316
Description: Auxiliary theorem for applications of supcvg 12314. (Contributed by NM, 4-Mar-2008.)
Hypotheses
Ref Expression
infcvg.1  |-  R  =  { x  |  E. y  e.  X  x  =  -u A }
infcvg.2  |-  ( y  e.  X  ->  A  e.  RR )
infcvg.3  |-  Z  e.  X
infcvg.4  |-  E. z  e.  RR  A. w  e.  R  w  <_  z
infcvg.5a  |-  S  = 
-u sup ( R ,  RR ,  <  )
infcvg.13  |-  ( y  =  C  ->  A  =  B )
Assertion
Ref Expression
infcvgaux2i  |-  ( C  e.  X  ->  S  <_  B )
Distinct variable groups:    x, A    x, y, B    z, w, R    x, X, y    x, Z, y    y, C
Allowed substitution hints:    A( y, z, w)    B( z, w)    C( x, z, w)    R( x, y)    S( x, y, z, w)    X( z, w)    Z( z, w)

Proof of Theorem infcvgaux2i
StepHypRef Expression
1 infcvg.5a . 2  |-  S  = 
-u sup ( R ,  RR ,  <  )
2 eqid 2283 . . . . . 6  |-  -u B  =  -u B
3 infcvg.13 . . . . . . . . 9  |-  ( y  =  C  ->  A  =  B )
43negeqd 9046 . . . . . . . 8  |-  ( y  =  C  ->  -u A  =  -u B )
54eqeq2d 2294 . . . . . . 7  |-  ( y  =  C  ->  ( -u B  =  -u A  <->  -u B  =  -u B
) )
65rspcev 2884 . . . . . 6  |-  ( ( C  e.  X  /\  -u B  =  -u B
)  ->  E. y  e.  X  -u B  = 
-u A )
72, 6mpan2 652 . . . . 5  |-  ( C  e.  X  ->  E. y  e.  X  -u B  = 
-u A )
8 negex 9050 . . . . . 6  |-  -u B  e.  _V
9 eqeq1 2289 . . . . . . 7  |-  ( x  =  -u B  ->  (
x  =  -u A  <->  -u B  =  -u A
) )
109rexbidv 2564 . . . . . 6  |-  ( x  =  -u B  ->  ( E. y  e.  X  x  =  -u A  <->  E. y  e.  X  -u B  = 
-u A ) )
11 infcvg.1 . . . . . 6  |-  R  =  { x  |  E. y  e.  X  x  =  -u A }
128, 10, 11elab2 2917 . . . . 5  |-  ( -u B  e.  R  <->  E. y  e.  X  -u B  = 
-u A )
137, 12sylibr 203 . . . 4  |-  ( C  e.  X  ->  -u B  e.  R )
14 infcvg.2 . . . . . 6  |-  ( y  e.  X  ->  A  e.  RR )
15 infcvg.3 . . . . . 6  |-  Z  e.  X
16 infcvg.4 . . . . . 6  |-  E. z  e.  RR  A. w  e.  R  w  <_  z
1711, 14, 15, 16infcvgaux1i 12315 . . . . 5  |-  ( R 
C_  RR  /\  R  =/=  (/)  /\  E. z  e.  RR  A. w  e.  R  w  <_  z
)
1817suprubii 9725 . . . 4  |-  ( -u B  e.  R  ->  -u B  <_  sup ( R ,  RR ,  <  ) )
1913, 18syl 15 . . 3  |-  ( C  e.  X  ->  -u B  <_  sup ( R ,  RR ,  <  ) )
203eleq1d 2349 . . . . 5  |-  ( y  =  C  ->  ( A  e.  RR  <->  B  e.  RR ) )
2120, 14vtoclga 2849 . . . 4  |-  ( C  e.  X  ->  B  e.  RR )
2217suprclii 9724 . . . 4  |-  sup ( R ,  RR ,  <  )  e.  RR
23 lenegcon1 9278 . . . 4  |-  ( ( B  e.  RR  /\  sup ( R ,  RR ,  <  )  e.  RR )  ->  ( -u B  <_  sup ( R ,  RR ,  <  )  <->  -u sup ( R ,  RR ,  <  )  <_  B )
)
2421, 22, 23sylancl 643 . . 3  |-  ( C  e.  X  ->  ( -u B  <_  sup ( R ,  RR ,  <  )  <->  -u sup ( R ,  RR ,  <  )  <_  B ) )
2519, 24mpbid 201 . 2  |-  ( C  e.  X  ->  -u sup ( R ,  RR ,  <  )  <_  B )
261, 25syl5eqbr 4056 1  |-  ( C  e.  X  ->  S  <_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1623    e. wcel 1684   {cab 2269   A.wral 2543   E.wrex 2544   class class class wbr 4023   supcsup 7193   RRcr 8736    < clt 8867    <_ cle 8868   -ucneg 9038
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040
  Copyright terms: Public domain W3C validator