MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infcvgaux2i Unicode version

Theorem infcvgaux2i 12600
Description: Auxiliary theorem for applications of supcvg 12598. (Contributed by NM, 4-Mar-2008.)
Hypotheses
Ref Expression
infcvg.1  |-  R  =  { x  |  E. y  e.  X  x  =  -u A }
infcvg.2  |-  ( y  e.  X  ->  A  e.  RR )
infcvg.3  |-  Z  e.  X
infcvg.4  |-  E. z  e.  RR  A. w  e.  R  w  <_  z
infcvg.5a  |-  S  = 
-u sup ( R ,  RR ,  <  )
infcvg.13  |-  ( y  =  C  ->  A  =  B )
Assertion
Ref Expression
infcvgaux2i  |-  ( C  e.  X  ->  S  <_  B )
Distinct variable groups:    x, A    x, y, B    z, w, R    x, X, y    x, Z, y    y, C
Allowed substitution hints:    A( y, z, w)    B( z, w)    C( x, z, w)    R( x, y)    S( x, y, z, w)    X( z, w)    Z( z, w)

Proof of Theorem infcvgaux2i
StepHypRef Expression
1 infcvg.5a . 2  |-  S  = 
-u sup ( R ,  RR ,  <  )
2 eqid 2412 . . . . . 6  |-  -u B  =  -u B
3 infcvg.13 . . . . . . . . 9  |-  ( y  =  C  ->  A  =  B )
43negeqd 9264 . . . . . . . 8  |-  ( y  =  C  ->  -u A  =  -u B )
54eqeq2d 2423 . . . . . . 7  |-  ( y  =  C  ->  ( -u B  =  -u A  <->  -u B  =  -u B
) )
65rspcev 3020 . . . . . 6  |-  ( ( C  e.  X  /\  -u B  =  -u B
)  ->  E. y  e.  X  -u B  = 
-u A )
72, 6mpan2 653 . . . . 5  |-  ( C  e.  X  ->  E. y  e.  X  -u B  = 
-u A )
8 negex 9268 . . . . . 6  |-  -u B  e.  _V
9 eqeq1 2418 . . . . . . 7  |-  ( x  =  -u B  ->  (
x  =  -u A  <->  -u B  =  -u A
) )
109rexbidv 2695 . . . . . 6  |-  ( x  =  -u B  ->  ( E. y  e.  X  x  =  -u A  <->  E. y  e.  X  -u B  = 
-u A ) )
11 infcvg.1 . . . . . 6  |-  R  =  { x  |  E. y  e.  X  x  =  -u A }
128, 10, 11elab2 3053 . . . . 5  |-  ( -u B  e.  R  <->  E. y  e.  X  -u B  = 
-u A )
137, 12sylibr 204 . . . 4  |-  ( C  e.  X  ->  -u B  e.  R )
14 infcvg.2 . . . . . 6  |-  ( y  e.  X  ->  A  e.  RR )
15 infcvg.3 . . . . . 6  |-  Z  e.  X
16 infcvg.4 . . . . . 6  |-  E. z  e.  RR  A. w  e.  R  w  <_  z
1711, 14, 15, 16infcvgaux1i 12599 . . . . 5  |-  ( R 
C_  RR  /\  R  =/=  (/)  /\  E. z  e.  RR  A. w  e.  R  w  <_  z
)
1817suprubii 9943 . . . 4  |-  ( -u B  e.  R  ->  -u B  <_  sup ( R ,  RR ,  <  ) )
1913, 18syl 16 . . 3  |-  ( C  e.  X  ->  -u B  <_  sup ( R ,  RR ,  <  ) )
203eleq1d 2478 . . . . 5  |-  ( y  =  C  ->  ( A  e.  RR  <->  B  e.  RR ) )
2120, 14vtoclga 2985 . . . 4  |-  ( C  e.  X  ->  B  e.  RR )
2217suprclii 9942 . . . 4  |-  sup ( R ,  RR ,  <  )  e.  RR
23 lenegcon1 9496 . . . 4  |-  ( ( B  e.  RR  /\  sup ( R ,  RR ,  <  )  e.  RR )  ->  ( -u B  <_  sup ( R ,  RR ,  <  )  <->  -u sup ( R ,  RR ,  <  )  <_  B )
)
2421, 22, 23sylancl 644 . . 3  |-  ( C  e.  X  ->  ( -u B  <_  sup ( R ,  RR ,  <  )  <->  -u sup ( R ,  RR ,  <  )  <_  B ) )
2519, 24mpbid 202 . 2  |-  ( C  e.  X  ->  -u sup ( R ,  RR ,  <  )  <_  B )
261, 25syl5eqbr 4213 1  |-  ( C  e.  X  ->  S  <_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    = wceq 1649    e. wcel 1721   {cab 2398   A.wral 2674   E.wrex 2675   class class class wbr 4180   supcsup 7411   RRcr 8953    < clt 9084    <_ cle 9085   -ucneg 9256
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-mulcom 9018  ax-addass 9019  ax-mulass 9020  ax-distr 9021  ax-i2m1 9022  ax-1ne0 9023  ax-1rid 9024  ax-rnegex 9025  ax-rrecex 9026  ax-cnre 9027  ax-pre-lttri 9028  ax-pre-lttrn 9029  ax-pre-ltadd 9030  ax-pre-mulgt0 9031  ax-pre-sup 9032
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-br 4181  df-opab 4235  df-mpt 4236  df-id 4466  df-po 4471  df-so 4472  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-riota 6516  df-er 6872  df-en 7077  df-dom 7078  df-sdom 7079  df-sup 7412  df-pnf 9086  df-mnf 9087  df-xr 9088  df-ltxr 9089  df-le 9090  df-sub 9257  df-neg 9258
  Copyright terms: Public domain W3C validator