MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infdif Unicode version

Theorem infdif 7835
Description: The cardinality of an infinite set does not change after subtracting a strictly smaller one. Example in [Enderton] p. 164. (Contributed by NM, 22-Oct-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
infdif  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  ( A  \  B )  ~~  A )

Proof of Theorem infdif
StepHypRef Expression
1 simp1 955 . . 3  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  A  e.  dom  card )
2 difss 3303 . . 3  |-  ( A 
\  B )  C_  A
3 ssdomg 6907 . . 3  |-  ( A  e.  dom  card  ->  ( ( A  \  B
)  C_  A  ->  ( A  \  B )  ~<_  A ) )
41, 2, 3ee10 1366 . 2  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  ( A  \  B )  ~<_  A )
5 sdomdom 6889 . . . . . . . . 9  |-  ( B 
~<  A  ->  B  ~<_  A )
653ad2ant3 978 . . . . . . . 8  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  B  ~<_  A )
7 numdom 7665 . . . . . . . 8  |-  ( ( A  e.  dom  card  /\  B  ~<_  A )  ->  B  e.  dom  card )
81, 6, 7syl2anc 642 . . . . . . 7  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  B  e.  dom  card )
9 unnum 7826 . . . . . . 7  |-  ( ( A  e.  dom  card  /\  B  e.  dom  card )  ->  ( A  u.  B )  e.  dom  card )
101, 8, 9syl2anc 642 . . . . . 6  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  ( A  u.  B )  e.  dom  card )
11 ssun1 3338 . . . . . 6  |-  A  C_  ( A  u.  B
)
12 ssdomg 6907 . . . . . 6  |-  ( ( A  u.  B )  e.  dom  card  ->  ( A  C_  ( A  u.  B )  ->  A  ~<_  ( A  u.  B
) ) )
1310, 11, 12ee10 1366 . . . . 5  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  A  ~<_  ( A  u.  B
) )
14 undif1 3529 . . . . . 6  |-  ( ( A  \  B )  u.  B )  =  ( A  u.  B
)
15 ssnum 7666 . . . . . . . 8  |-  ( ( A  e.  dom  card  /\  ( A  \  B
)  C_  A )  ->  ( A  \  B
)  e.  dom  card )
161, 2, 15sylancl 643 . . . . . . 7  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  ( A  \  B )  e. 
dom  card )
17 uncdadom 7797 . . . . . . 7  |-  ( ( ( A  \  B
)  e.  dom  card  /\  B  e.  dom  card )  ->  ( ( A 
\  B )  u.  B )  ~<_  ( ( A  \  B )  +c  B ) )
1816, 8, 17syl2anc 642 . . . . . 6  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  (
( A  \  B
)  u.  B )  ~<_  ( ( A  \  B )  +c  B
) )
1914, 18syl5eqbrr 4057 . . . . 5  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  ( A  u.  B )  ~<_  ( ( A  \  B )  +c  B
) )
20 domtr 6914 . . . . 5  |-  ( ( A  ~<_  ( A  u.  B )  /\  ( A  u.  B )  ~<_  ( ( A  \  B )  +c  B
) )  ->  A  ~<_  ( ( A  \  B )  +c  B
) )
2113, 19, 20syl2anc 642 . . . 4  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  A  ~<_  ( ( A  \  B )  +c  B
) )
22 simp3 957 . . . . . . 7  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  B  ~<  A )
23 sdomdom 6889 . . . . . . . . 9  |-  ( ( A  \  B ) 
~<  B  ->  ( A 
\  B )  ~<_  B )
24 cdadom1 7812 . . . . . . . . 9  |-  ( ( A  \  B )  ~<_  B  ->  ( ( A  \  B )  +c  B )  ~<_  ( B  +c  B ) )
2523, 24syl 15 . . . . . . . 8  |-  ( ( A  \  B ) 
~<  B  ->  ( ( A  \  B )  +c  B )  ~<_  ( B  +c  B ) )
26 domtr 6914 . . . . . . . . . . 11  |-  ( ( A  ~<_  ( ( A 
\  B )  +c  B )  /\  (
( A  \  B
)  +c  B )  ~<_  ( B  +c  B
) )  ->  A  ~<_  ( B  +c  B
) )
2726ex 423 . . . . . . . . . 10  |-  ( A  ~<_  ( ( A  \  B )  +c  B
)  ->  ( (
( A  \  B
)  +c  B )  ~<_  ( B  +c  B
)  ->  A  ~<_  ( B  +c  B ) ) )
2821, 27syl 15 . . . . . . . . 9  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  (
( ( A  \  B )  +c  B
)  ~<_  ( B  +c  B )  ->  A  ~<_  ( B  +c  B
) ) )
29 simp2 956 . . . . . . . . . . . 12  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  om  ~<_  A )
30 domtr 6914 . . . . . . . . . . . . 13  |-  ( ( om  ~<_  A  /\  A  ~<_  ( B  +c  B
) )  ->  om  ~<_  ( B  +c  B ) )
3130ex 423 . . . . . . . . . . . 12  |-  ( om  ~<_  A  ->  ( A  ~<_  ( B  +c  B
)  ->  om  ~<_  ( B  +c  B ) ) )
3229, 31syl 15 . . . . . . . . . . 11  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  ( A  ~<_  ( B  +c  B )  ->  om  ~<_  ( B  +c  B ) ) )
33 cdainf 7818 . . . . . . . . . . . . 13  |-  ( om  ~<_  B  <->  om  ~<_  ( B  +c  B ) )
3433biimpri 197 . . . . . . . . . . . 12  |-  ( om  ~<_  ( B  +c  B
)  ->  om  ~<_  B )
35 domrefg 6896 . . . . . . . . . . . . 13  |-  ( B  e.  dom  card  ->  B  ~<_  B )
36 infcdaabs 7832 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  dom  card  /\ 
om  ~<_  B  /\  B  ~<_  B )  ->  ( B  +c  B )  ~~  B )
37363com23 1157 . . . . . . . . . . . . . 14  |-  ( ( B  e.  dom  card  /\  B  ~<_  B  /\  om  ~<_  B )  ->  ( B  +c  B )  ~~  B )
38373expia 1153 . . . . . . . . . . . . 13  |-  ( ( B  e.  dom  card  /\  B  ~<_  B )  -> 
( om  ~<_  B  -> 
( B  +c  B
)  ~~  B )
)
3935, 38mpdan 649 . . . . . . . . . . . 12  |-  ( B  e.  dom  card  ->  ( om  ~<_  B  ->  ( B  +c  B )  ~~  B ) )
408, 34, 39syl2im 34 . . . . . . . . . . 11  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  ( om 
~<_  ( B  +c  B
)  ->  ( B  +c  B )  ~~  B
) )
4132, 40syld 40 . . . . . . . . . 10  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  ( A  ~<_  ( B  +c  B )  ->  ( B  +c  B )  ~~  B ) )
42 domen2 7004 . . . . . . . . . . 11  |-  ( ( B  +c  B ) 
~~  B  ->  ( A  ~<_  ( B  +c  B )  <->  A  ~<_  B ) )
4342biimpcd 215 . . . . . . . . . 10  |-  ( A  ~<_  ( B  +c  B
)  ->  ( ( B  +c  B )  ~~  B  ->  A  ~<_  B ) )
4441, 43sylcom 25 . . . . . . . . 9  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  ( A  ~<_  ( B  +c  B )  ->  A  ~<_  B ) )
4528, 44syld 40 . . . . . . . 8  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  (
( ( A  \  B )  +c  B
)  ~<_  ( B  +c  B )  ->  A  ~<_  B ) )
46 domnsym 6987 . . . . . . . 8  |-  ( A  ~<_  B  ->  -.  B  ~<  A )
4725, 45, 46syl56 30 . . . . . . 7  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  (
( A  \  B
)  ~<  B  ->  -.  B  ~<  A ) )
4822, 47mt2d 109 . . . . . 6  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  -.  ( A  \  B ) 
~<  B )
49 domtri2 7622 . . . . . . 7  |-  ( ( B  e.  dom  card  /\  ( A  \  B
)  e.  dom  card )  ->  ( B  ~<_  ( A  \  B )  <->  -.  ( A  \  B
)  ~<  B ) )
508, 16, 49syl2anc 642 . . . . . 6  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  ( B  ~<_  ( A  \  B )  <->  -.  ( A  \  B )  ~<  B ) )
5148, 50mpbird 223 . . . . 5  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  B  ~<_  ( A  \  B ) )
52 cdadom2 7813 . . . . 5  |-  ( B  ~<_  ( A  \  B
)  ->  ( ( A  \  B )  +c  B )  ~<_  ( ( A  \  B )  +c  ( A  \  B ) ) )
5351, 52syl 15 . . . 4  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  (
( A  \  B
)  +c  B )  ~<_  ( ( A  \  B )  +c  ( A  \  B ) ) )
54 domtr 6914 . . . 4  |-  ( ( A  ~<_  ( ( A 
\  B )  +c  B )  /\  (
( A  \  B
)  +c  B )  ~<_  ( ( A  \  B )  +c  ( A  \  B ) ) )  ->  A  ~<_  ( ( A  \  B )  +c  ( A  \  B ) ) )
5521, 53, 54syl2anc 642 . . 3  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  A  ~<_  ( ( A  \  B )  +c  ( A  \  B ) ) )
56 domtr 6914 . . . . . 6  |-  ( ( om  ~<_  A  /\  A  ~<_  ( ( A  \  B )  +c  ( A  \  B ) ) )  ->  om  ~<_  ( ( A  \  B )  +c  ( A  \  B ) ) )
5729, 55, 56syl2anc 642 . . . . 5  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  om  ~<_  ( ( A  \  B )  +c  ( A  \  B ) ) )
58 cdainf 7818 . . . . 5  |-  ( om  ~<_  ( A  \  B
)  <->  om  ~<_  ( ( A 
\  B )  +c  ( A  \  B
) ) )
5957, 58sylibr 203 . . . 4  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  om  ~<_  ( A 
\  B ) )
60 domrefg 6896 . . . . 5  |-  ( ( A  \  B )  e.  dom  card  ->  ( A  \  B )  ~<_  ( A  \  B
) )
6116, 60syl 15 . . . 4  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  ( A  \  B )  ~<_  ( A  \  B ) )
62 infcdaabs 7832 . . . 4  |-  ( ( ( A  \  B
)  e.  dom  card  /\ 
om  ~<_  ( A  \  B )  /\  ( A  \  B )  ~<_  ( A  \  B ) )  ->  ( ( A  \  B )  +c  ( A  \  B
) )  ~~  ( A  \  B ) )
6316, 59, 61, 62syl3anc 1182 . . 3  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  (
( A  \  B
)  +c  ( A 
\  B ) ) 
~~  ( A  \  B ) )
64 domentr 6920 . . 3  |-  ( ( A  ~<_  ( ( A 
\  B )  +c  ( A  \  B
) )  /\  (
( A  \  B
)  +c  ( A 
\  B ) ) 
~~  ( A  \  B ) )  ->  A  ~<_  ( A  \  B ) )
6555, 63, 64syl2anc 642 . 2  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  A  ~<_  ( A  \  B ) )
66 sbth 6981 . 2  |-  ( ( ( A  \  B
)  ~<_  A  /\  A  ~<_  ( A  \  B ) )  ->  ( A  \  B )  ~~  A
)
674, 65, 66syl2anc 642 1  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  ( A  \  B )  ~~  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ w3a 934    e. wcel 1684    \ cdif 3149    u. cun 3150    C_ wss 3152   class class class wbr 4023   omcom 4656   dom cdm 4689  (class class class)co 5858    ~~ cen 6860    ~<_ cdom 6861    ~< csdm 6862   cardccrd 7568    +c ccda 7793
This theorem is referenced by:  infdif2  7836  alephsuc3  8202  aleph1irr  12524
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-oi 7225  df-card 7572  df-cda 7794
  Copyright terms: Public domain W3C validator