MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infeq5 Unicode version

Theorem infeq5 7354
Description: The statement "there exists a set that is a proper subset of its union" is equivalent to the Axiom of Infinity (shown on the right-hand side in the form of omex 7360.) The left-hand side provides us with a very short way to express the Axiom of Infinity using only elementary symbols. This proof of equivalence does not depend on the Axiom of Infinity. (Contributed by NM, 23-Mar-2004.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
infeq5  |-  ( E. x  x  C.  U. x 
<->  om  e.  _V )

Proof of Theorem infeq5
Dummy variables  y  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pss 3181 . . . . 5  |-  ( x 
C.  U. x  <->  ( x  C_ 
U. x  /\  x  =/=  U. x ) )
2 unieq 3852 . . . . . . . . . 10  |-  ( x  =  (/)  ->  U. x  =  U. (/) )
3 uni0 3870 . . . . . . . . . 10  |-  U. (/)  =  (/)
42, 3syl6req 2345 . . . . . . . . 9  |-  ( x  =  (/)  ->  (/)  =  U. x )
5 eqtr 2313 . . . . . . . . 9  |-  ( ( x  =  (/)  /\  (/)  =  U. x )  ->  x  =  U. x )
64, 5mpdan 649 . . . . . . . 8  |-  ( x  =  (/)  ->  x  = 
U. x )
76necon3i 2498 . . . . . . 7  |-  ( x  =/=  U. x  ->  x  =/=  (/) )
87anim1i 551 . . . . . 6  |-  ( ( x  =/=  U. x  /\  x  C_  U. x
)  ->  ( x  =/=  (/)  /\  x  C_  U. x ) )
98ancoms 439 . . . . 5  |-  ( ( x  C_  U. x  /\  x  =/=  U. x
)  ->  ( x  =/=  (/)  /\  x  C_  U. x ) )
101, 9sylbi 187 . . . 4  |-  ( x 
C.  U. x  ->  (
x  =/=  (/)  /\  x  C_ 
U. x ) )
1110eximi 1566 . . 3  |-  ( E. x  x  C.  U. x  ->  E. x ( x  =/=  (/)  /\  x  C_  U. x ) )
12 eqid 2296 . . . . 5  |-  ( y  e.  _V  |->  { w  e.  x  |  (
w  i^i  x )  C_  y } )  =  ( y  e.  _V  |->  { w  e.  x  |  ( w  i^i  x )  C_  y } )
13 eqid 2296 . . . . 5  |-  ( rec ( ( y  e. 
_V  |->  { w  e.  x  |  ( w  i^i  x )  C_  y } ) ,  (/) )  |`  om )  =  ( rec ( ( y  e.  _V  |->  { w  e.  x  |  ( w  i^i  x
)  C_  y }
) ,  (/) )  |`  om )
14 vex 2804 . . . . 5  |-  x  e. 
_V
1512, 13, 14, 14inf3lem7 7351 . . . 4  |-  ( ( x  =/=  (/)  /\  x  C_ 
U. x )  ->  om  e.  _V )
1615exlimiv 1624 . . 3  |-  ( E. x ( x  =/=  (/)  /\  x  C_  U. x
)  ->  om  e.  _V )
1711, 16syl 15 . 2  |-  ( E. x  x  C.  U. x  ->  om  e.  _V )
18 infeq5i 7353 . 2  |-  ( om  e.  _V  ->  E. x  x  C.  U. x )
1917, 18impbii 180 1  |-  ( E. x  x  C.  U. x 
<->  om  e.  _V )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358   E.wex 1531    = wceq 1632    e. wcel 1696    =/= wne 2459   {crab 2560   _Vcvv 2801    i^i cin 3164    C_ wss 3165    C. wpss 3166   (/)c0 3468   U.cuni 3843    e. cmpt 4093   omcom 4672    |` cres 4707   reccrdg 6438
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-reg 7322
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-recs 6404  df-rdg 6439
  Copyright terms: Public domain W3C validator