MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inficl Unicode version

Theorem inficl 7367
Description: A set which is closed under pairwise intersection is closed under finite intersection. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
inficl  |-  ( A  e.  V  ->  ( A. x  e.  A  A. y  e.  A  ( x  i^i  y
)  e.  A  <->  ( fi `  A )  =  A ) )
Distinct variable groups:    x, y, A    y, V
Allowed substitution hint:    V( x)

Proof of Theorem inficl
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ssfii 7361 . . 3  |-  ( A  e.  V  ->  A  C_  ( fi `  A
) )
2 eqimss2 3346 . . . . . . . 8  |-  ( z  =  A  ->  A  C_  z )
32biantrurd 495 . . . . . . 7  |-  ( z  =  A  ->  ( A. x  e.  z  A. y  e.  z 
( x  i^i  y
)  e.  z  <->  ( A  C_  z  /\  A. x  e.  z  A. y  e.  z  ( x  i^i  y )  e.  z ) ) )
4 eleq2 2450 . . . . . . . . 9  |-  ( z  =  A  ->  (
( x  i^i  y
)  e.  z  <->  ( x  i^i  y )  e.  A
) )
54raleqbi1dv 2857 . . . . . . . 8  |-  ( z  =  A  ->  ( A. y  e.  z 
( x  i^i  y
)  e.  z  <->  A. y  e.  A  ( x  i^i  y )  e.  A
) )
65raleqbi1dv 2857 . . . . . . 7  |-  ( z  =  A  ->  ( A. x  e.  z  A. y  e.  z 
( x  i^i  y
)  e.  z  <->  A. x  e.  A  A. y  e.  A  ( x  i^i  y )  e.  A
) )
73, 6bitr3d 247 . . . . . 6  |-  ( z  =  A  ->  (
( A  C_  z  /\  A. x  e.  z 
A. y  e.  z  ( x  i^i  y
)  e.  z )  <->  A. x  e.  A  A. y  e.  A  ( x  i^i  y
)  e.  A ) )
87elabg 3028 . . . . 5  |-  ( A  e.  V  ->  ( A  e.  { z  |  ( A  C_  z  /\  A. x  e.  z  A. y  e.  z  ( x  i^i  y )  e.  z ) }  <->  A. x  e.  A  A. y  e.  A  ( x  i^i  y )  e.  A
) )
9 intss1 4009 . . . . 5  |-  ( A  e.  { z  |  ( A  C_  z  /\  A. x  e.  z 
A. y  e.  z  ( x  i^i  y
)  e.  z ) }  ->  |^| { z  |  ( A  C_  z  /\  A. x  e.  z  A. y  e.  z  ( x  i^i  y )  e.  z ) }  C_  A
)
108, 9syl6bir 221 . . . 4  |-  ( A  e.  V  ->  ( A. x  e.  A  A. y  e.  A  ( x  i^i  y
)  e.  A  ->  |^| { z  |  ( A  C_  z  /\  A. x  e.  z  A. y  e.  z  (
x  i^i  y )  e.  z ) }  C_  A ) )
11 dffi2 7365 . . . . 5  |-  ( A  e.  V  ->  ( fi `  A )  = 
|^| { z  |  ( A  C_  z  /\  A. x  e.  z  A. y  e.  z  (
x  i^i  y )  e.  z ) } )
1211sseq1d 3320 . . . 4  |-  ( A  e.  V  ->  (
( fi `  A
)  C_  A  <->  |^| { z  |  ( A  C_  z  /\  A. x  e.  z  A. y  e.  z  ( x  i^i  y )  e.  z ) }  C_  A
) )
1310, 12sylibrd 226 . . 3  |-  ( A  e.  V  ->  ( A. x  e.  A  A. y  e.  A  ( x  i^i  y
)  e.  A  -> 
( fi `  A
)  C_  A )
)
14 eqss 3308 . . . 4  |-  ( ( fi `  A )  =  A  <->  ( ( fi `  A )  C_  A  /\  A  C_  ( fi `  A ) ) )
1514simplbi2com 1380 . . 3  |-  ( A 
C_  ( fi `  A )  ->  (
( fi `  A
)  C_  A  ->  ( fi `  A )  =  A ) )
161, 13, 15sylsyld 54 . 2  |-  ( A  e.  V  ->  ( A. x  e.  A  A. y  e.  A  ( x  i^i  y
)  e.  A  -> 
( fi `  A
)  =  A ) )
17 fiin 7364 . . . 4  |-  ( ( x  e.  ( fi
`  A )  /\  y  e.  ( fi `  A ) )  -> 
( x  i^i  y
)  e.  ( fi
`  A ) )
1817rgen2a 2717 . . 3  |-  A. x  e.  ( fi `  A
) A. y  e.  ( fi `  A
) ( x  i^i  y )  e.  ( fi `  A )
19 eleq2 2450 . . . . 5  |-  ( ( fi `  A )  =  A  ->  (
( x  i^i  y
)  e.  ( fi
`  A )  <->  ( x  i^i  y )  e.  A
) )
2019raleqbi1dv 2857 . . . 4  |-  ( ( fi `  A )  =  A  ->  ( A. y  e.  ( fi `  A ) ( x  i^i  y )  e.  ( fi `  A )  <->  A. y  e.  A  ( x  i^i  y )  e.  A
) )
2120raleqbi1dv 2857 . . 3  |-  ( ( fi `  A )  =  A  ->  ( A. x  e.  ( fi `  A ) A. y  e.  ( fi `  A ) ( x  i^i  y )  e.  ( fi `  A
)  <->  A. x  e.  A  A. y  e.  A  ( x  i^i  y
)  e.  A ) )
2218, 21mpbii 203 . 2  |-  ( ( fi `  A )  =  A  ->  A. x  e.  A  A. y  e.  A  ( x  i^i  y )  e.  A
)
2316, 22impbid1 195 1  |-  ( A  e.  V  ->  ( A. x  e.  A  A. y  e.  A  ( x  i^i  y
)  e.  A  <->  ( fi `  A )  =  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   {cab 2375   A.wral 2651    i^i cin 3264    C_ wss 3265   |^|cint 3994   ` cfv 5396   ficfi 7352
This theorem is referenced by:  fipwuni  7368  fisn  7369  fitop  16898  ordtbaslem  17176  ptbasin2  17533  filfi  17814  fmfnfmlem3  17911  ustuqtop2  18195
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-reu 2658  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-int 3995  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-recs 6571  df-rdg 6606  df-1o 6662  df-oadd 6666  df-er 6843  df-en 7048  df-fin 7051  df-fi 7353
  Copyright terms: Public domain W3C validator