MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infm3 Structured version   Unicode version

Theorem infm3 9959
Description: The completeness axiom for reals in terms of infimum: a non-empty, bounded-below set of reals has an infimum. (This theorem is the dual of sup3 9957.) (Contributed by NM, 14-Jun-2005.)
Assertion
Ref Expression
infm3  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  ( x  < 
y  ->  E. z  e.  A  z  <  y ) ) )
Distinct variable group:    x, y, z, A

Proof of Theorem infm3
Dummy variables  w  v  u  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3334 . . . . . . . . 9  |-  ( A 
C_  RR  ->  ( v  e.  A  ->  v  e.  RR ) )
21pm4.71rd 617 . . . . . . . 8  |-  ( A 
C_  RR  ->  ( v  e.  A  <->  ( v  e.  RR  /\  v  e.  A ) ) )
32exbidv 1636 . . . . . . 7  |-  ( A 
C_  RR  ->  ( E. v  v  e.  A  <->  E. v ( v  e.  RR  /\  v  e.  A ) ) )
4 df-rex 2703 . . . . . . . 8  |-  ( E. v  e.  RR  v  e.  A  <->  E. v ( v  e.  RR  /\  v  e.  A ) )
5 renegcl 9356 . . . . . . . . 9  |-  ( w  e.  RR  ->  -u w  e.  RR )
6 infm3lem 9958 . . . . . . . . 9  |-  ( v  e.  RR  ->  E. w  e.  RR  v  =  -u w )
7 eleq1 2495 . . . . . . . . 9  |-  ( v  =  -u w  ->  (
v  e.  A  <->  -u w  e.  A ) )
85, 6, 7rexxfr 4735 . . . . . . . 8  |-  ( E. v  e.  RR  v  e.  A  <->  E. w  e.  RR  -u w  e.  A )
94, 8bitr3i 243 . . . . . . 7  |-  ( E. v ( v  e.  RR  /\  v  e.  A )  <->  E. w  e.  RR  -u w  e.  A
)
103, 9syl6bb 253 . . . . . 6  |-  ( A 
C_  RR  ->  ( E. v  v  e.  A  <->  E. w  e.  RR  -u w  e.  A ) )
11 n0 3629 . . . . . 6  |-  ( A  =/=  (/)  <->  E. v  v  e.  A )
12 rabn0 3639 . . . . . 6  |-  ( { w  e.  RR  |  -u w  e.  A }  =/=  (/)  <->  E. w  e.  RR  -u w  e.  A )
1310, 11, 123bitr4g 280 . . . . 5  |-  ( A 
C_  RR  ->  ( A  =/=  (/)  <->  { w  e.  RR  |  -u w  e.  A }  =/=  (/) ) )
14 ssel 3334 . . . . . . . . . . . 12  |-  ( A 
C_  RR  ->  ( y  e.  A  ->  y  e.  RR ) )
1514pm4.71rd 617 . . . . . . . . . . 11  |-  ( A 
C_  RR  ->  ( y  e.  A  <->  ( y  e.  RR  /\  y  e.  A ) ) )
1615imbi1d 309 . . . . . . . . . 10  |-  ( A 
C_  RR  ->  ( ( y  e.  A  ->  x  <_  y )  <->  ( (
y  e.  RR  /\  y  e.  A )  ->  x  <_  y )
) )
17 impexp 434 . . . . . . . . . 10  |-  ( ( ( y  e.  RR  /\  y  e.  A )  ->  x  <_  y
)  <->  ( y  e.  RR  ->  ( y  e.  A  ->  x  <_ 
y ) ) )
1816, 17syl6bb 253 . . . . . . . . 9  |-  ( A 
C_  RR  ->  ( ( y  e.  A  ->  x  <_  y )  <->  ( y  e.  RR  ->  ( y  e.  A  ->  x  <_ 
y ) ) ) )
1918albidv 1635 . . . . . . . 8  |-  ( A 
C_  RR  ->  ( A. y ( y  e.  A  ->  x  <_  y )  <->  A. y ( y  e.  RR  ->  (
y  e.  A  ->  x  <_  y ) ) ) )
20 df-ral 2702 . . . . . . . 8  |-  ( A. y  e.  A  x  <_  y  <->  A. y ( y  e.  A  ->  x  <_  y ) )
21 renegcl 9356 . . . . . . . . . 10  |-  ( v  e.  RR  ->  -u v  e.  RR )
22 infm3lem 9958 . . . . . . . . . 10  |-  ( y  e.  RR  ->  E. v  e.  RR  y  =  -u v )
23 eleq1 2495 . . . . . . . . . . 11  |-  ( y  =  -u v  ->  (
y  e.  A  <->  -u v  e.  A ) )
24 breq2 4208 . . . . . . . . . . 11  |-  ( y  =  -u v  ->  (
x  <_  y  <->  x  <_  -u v ) )
2523, 24imbi12d 312 . . . . . . . . . 10  |-  ( y  =  -u v  ->  (
( y  e.  A  ->  x  <_  y )  <->  (
-u v  e.  A  ->  x  <_  -u v ) ) )
2621, 22, 25ralxfr 4733 . . . . . . . . 9  |-  ( A. y  e.  RR  (
y  e.  A  ->  x  <_  y )  <->  A. v  e.  RR  ( -u v  e.  A  ->  x  <_  -u v ) )
27 df-ral 2702 . . . . . . . . 9  |-  ( A. y  e.  RR  (
y  e.  A  ->  x  <_  y )  <->  A. y
( y  e.  RR  ->  ( y  e.  A  ->  x  <_  y )
) )
2826, 27bitr3i 243 . . . . . . . 8  |-  ( A. v  e.  RR  ( -u v  e.  A  ->  x  <_  -u v )  <->  A. y
( y  e.  RR  ->  ( y  e.  A  ->  x  <_  y )
) )
2919, 20, 283bitr4g 280 . . . . . . 7  |-  ( A 
C_  RR  ->  ( A. y  e.  A  x  <_  y  <->  A. v  e.  RR  ( -u v  e.  A  ->  x  <_  -u v ) ) )
3029rexbidv 2718 . . . . . 6  |-  ( A 
C_  RR  ->  ( E. x  e.  RR  A. y  e.  A  x  <_  y  <->  E. x  e.  RR  A. v  e.  RR  ( -u v  e.  A  ->  x  <_  -u v ) ) )
31 renegcl 9356 . . . . . . . 8  |-  ( u  e.  RR  ->  -u u  e.  RR )
32 infm3lem 9958 . . . . . . . 8  |-  ( x  e.  RR  ->  E. u  e.  RR  x  =  -u u )
33 breq1 4207 . . . . . . . . . 10  |-  ( x  =  -u u  ->  (
x  <_  -u v  <->  -u u  <_  -u v ) )
3433imbi2d 308 . . . . . . . . 9  |-  ( x  =  -u u  ->  (
( -u v  e.  A  ->  x  <_  -u v )  <-> 
( -u v  e.  A  -> 
-u u  <_  -u v
) ) )
3534ralbidv 2717 . . . . . . . 8  |-  ( x  =  -u u  ->  ( A. v  e.  RR  ( -u v  e.  A  ->  x  <_  -u v )  <->  A. v  e.  RR  ( -u v  e.  A  -> 
-u u  <_  -u v
) ) )
3631, 32, 35rexxfr 4735 . . . . . . 7  |-  ( E. x  e.  RR  A. v  e.  RR  ( -u v  e.  A  ->  x  <_  -u v )  <->  E. u  e.  RR  A. v  e.  RR  ( -u v  e.  A  ->  -u u  <_ 
-u v ) )
37 negeq 9290 . . . . . . . . . . . . . . 15  |-  ( w  =  v  ->  -u w  =  -u v )
3837eleq1d 2501 . . . . . . . . . . . . . 14  |-  ( w  =  v  ->  ( -u w  e.  A  <->  -u v  e.  A ) )
3938elrab 3084 . . . . . . . . . . . . 13  |-  ( v  e.  { w  e.  RR  |  -u w  e.  A }  <->  ( v  e.  RR  /\  -u v  e.  A ) )
4039imbi1i 316 . . . . . . . . . . . 12  |-  ( ( v  e.  { w  e.  RR  |  -u w  e.  A }  ->  v  <_  u )  <->  ( (
v  e.  RR  /\  -u v  e.  A )  ->  v  <_  u
) )
41 impexp 434 . . . . . . . . . . . 12  |-  ( ( ( v  e.  RR  /\  -u v  e.  A
)  ->  v  <_  u )  <->  ( v  e.  RR  ->  ( -u v  e.  A  ->  v  <_  u ) ) )
4240, 41bitri 241 . . . . . . . . . . 11  |-  ( ( v  e.  { w  e.  RR  |  -u w  e.  A }  ->  v  <_  u )  <->  ( v  e.  RR  ->  ( -u v  e.  A  ->  v  <_  u ) ) )
4342albii 1575 . . . . . . . . . 10  |-  ( A. v ( v  e. 
{ w  e.  RR  |  -u w  e.  A }  ->  v  <_  u
)  <->  A. v ( v  e.  RR  ->  ( -u v  e.  A  -> 
v  <_  u )
) )
44 df-ral 2702 . . . . . . . . . 10  |-  ( A. v  e.  { w  e.  RR  |  -u w  e.  A } v  <_  u 
<-> 
A. v ( v  e.  { w  e.  RR  |  -u w  e.  A }  ->  v  <_  u ) )
45 df-ral 2702 . . . . . . . . . 10  |-  ( A. v  e.  RR  ( -u v  e.  A  -> 
v  <_  u )  <->  A. v ( v  e.  RR  ->  ( -u v  e.  A  ->  v  <_  u ) ) )
4643, 44, 453bitr4ri 270 . . . . . . . . 9  |-  ( A. v  e.  RR  ( -u v  e.  A  -> 
v  <_  u )  <->  A. v  e.  { w  e.  RR  |  -u w  e.  A } v  <_  u )
47 leneg 9523 . . . . . . . . . . . 12  |-  ( ( v  e.  RR  /\  u  e.  RR )  ->  ( v  <_  u  <->  -u u  <_  -u v ) )
4847ancoms 440 . . . . . . . . . . 11  |-  ( ( u  e.  RR  /\  v  e.  RR )  ->  ( v  <_  u  <->  -u u  <_  -u v ) )
4948imbi2d 308 . . . . . . . . . 10  |-  ( ( u  e.  RR  /\  v  e.  RR )  ->  ( ( -u v  e.  A  ->  v  <_  u )  <->  ( -u v  e.  A  ->  -u u  <_ 
-u v ) ) )
5049ralbidva 2713 . . . . . . . . 9  |-  ( u  e.  RR  ->  ( A. v  e.  RR  ( -u v  e.  A  ->  v  <_  u )  <->  A. v  e.  RR  ( -u v  e.  A  ->  -u u  <_  -u v ) ) )
5146, 50syl5bbr 251 . . . . . . . 8  |-  ( u  e.  RR  ->  ( A. v  e.  { w  e.  RR  |  -u w  e.  A } v  <_  u 
<-> 
A. v  e.  RR  ( -u v  e.  A  -> 
-u u  <_  -u v
) ) )
5251rexbiia 2730 . . . . . . 7  |-  ( E. u  e.  RR  A. v  e.  { w  e.  RR  |  -u w  e.  A } v  <_  u 
<->  E. u  e.  RR  A. v  e.  RR  ( -u v  e.  A  ->  -u u  <_  -u v ) )
5336, 52bitr4i 244 . . . . . 6  |-  ( E. x  e.  RR  A. v  e.  RR  ( -u v  e.  A  ->  x  <_  -u v )  <->  E. u  e.  RR  A. v  e. 
{ w  e.  RR  |  -u w  e.  A } v  <_  u
)
5430, 53syl6bb 253 . . . . 5  |-  ( A 
C_  RR  ->  ( E. x  e.  RR  A. y  e.  A  x  <_  y  <->  E. u  e.  RR  A. v  e.  { w  e.  RR  |  -u w  e.  A } v  <_  u ) )
5513, 54anbi12d 692 . . . 4  |-  ( A 
C_  RR  ->  ( ( A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y )  <->  ( { w  e.  RR  |  -u w  e.  A }  =/=  (/)  /\  E. u  e.  RR  A. v  e.  { w  e.  RR  |  -u w  e.  A } v  <_  u
) ) )
56 ssrab2 3420 . . . . 5  |-  { w  e.  RR  |  -u w  e.  A }  C_  RR
57 sup3 9957 . . . . 5  |-  ( ( { w  e.  RR  |  -u w  e.  A }  C_  RR  /\  {
w  e.  RR  |  -u w  e.  A }  =/=  (/)  /\  E. u  e.  RR  A. v  e. 
{ w  e.  RR  |  -u w  e.  A } v  <_  u
)  ->  E. u  e.  RR  ( A. v  e.  { w  e.  RR  |  -u w  e.  A }  -.  u  <  v  /\  A. v  e.  RR  ( v  <  u  ->  E. t  e.  {
w  e.  RR  |  -u w  e.  A }
v  <  t )
) )
5856, 57mp3an1 1266 . . . 4  |-  ( ( { w  e.  RR  |  -u w  e.  A }  =/=  (/)  /\  E. u  e.  RR  A. v  e. 
{ w  e.  RR  |  -u w  e.  A } v  <_  u
)  ->  E. u  e.  RR  ( A. v  e.  { w  e.  RR  |  -u w  e.  A }  -.  u  <  v  /\  A. v  e.  RR  ( v  <  u  ->  E. t  e.  {
w  e.  RR  |  -u w  e.  A }
v  <  t )
) )
5955, 58syl6bi 220 . . 3  |-  ( A 
C_  RR  ->  ( ( A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y )  ->  E. u  e.  RR  ( A. v  e.  { w  e.  RR  |  -u w  e.  A }  -.  u  <  v  /\  A. v  e.  RR  ( v  <  u  ->  E. t  e.  {
w  e.  RR  |  -u w  e.  A }
v  <  t )
) ) )
6015imbi1d 309 . . . . . . . . 9  |-  ( A 
C_  RR  ->  ( ( y  e.  A  ->  -.  y  <  x )  <-> 
( ( y  e.  RR  /\  y  e.  A )  ->  -.  y  <  x ) ) )
61 impexp 434 . . . . . . . . 9  |-  ( ( ( y  e.  RR  /\  y  e.  A )  ->  -.  y  <  x )  <->  ( y  e.  RR  ->  ( y  e.  A  ->  -.  y  <  x ) ) )
6260, 61syl6bb 253 . . . . . . . 8  |-  ( A 
C_  RR  ->  ( ( y  e.  A  ->  -.  y  <  x )  <-> 
( y  e.  RR  ->  ( y  e.  A  ->  -.  y  <  x
) ) ) )
6362albidv 1635 . . . . . . 7  |-  ( A 
C_  RR  ->  ( A. y ( y  e.  A  ->  -.  y  <  x )  <->  A. y
( y  e.  RR  ->  ( y  e.  A  ->  -.  y  <  x
) ) ) )
64 df-ral 2702 . . . . . . 7  |-  ( A. y  e.  A  -.  y  <  x  <->  A. y
( y  e.  A  ->  -.  y  <  x
) )
65 breq1 4207 . . . . . . . . . . 11  |-  ( y  =  -u v  ->  (
y  <  x  <->  -u v  < 
x ) )
6665notbid 286 . . . . . . . . . 10  |-  ( y  =  -u v  ->  ( -.  y  <  x  <->  -.  -u v  <  x ) )
6723, 66imbi12d 312 . . . . . . . . 9  |-  ( y  =  -u v  ->  (
( y  e.  A  ->  -.  y  <  x
)  <->  ( -u v  e.  A  ->  -.  -u v  <  x ) ) )
6821, 22, 67ralxfr 4733 . . . . . . . 8  |-  ( A. y  e.  RR  (
y  e.  A  ->  -.  y  <  x )  <->  A. v  e.  RR  ( -u v  e.  A  ->  -.  -u v  <  x
) )
69 df-ral 2702 . . . . . . . 8  |-  ( A. y  e.  RR  (
y  e.  A  ->  -.  y  <  x )  <->  A. y ( y  e.  RR  ->  ( y  e.  A  ->  -.  y  <  x ) ) )
7068, 69bitr3i 243 . . . . . . 7  |-  ( A. v  e.  RR  ( -u v  e.  A  ->  -.  -u v  <  x
)  <->  A. y ( y  e.  RR  ->  (
y  e.  A  ->  -.  y  <  x ) ) )
7163, 64, 703bitr4g 280 . . . . . 6  |-  ( A 
C_  RR  ->  ( A. y  e.  A  -.  y  <  x  <->  A. v  e.  RR  ( -u v  e.  A  ->  -.  -u v  <  x ) ) )
72 breq2 4208 . . . . . . . . 9  |-  ( y  =  -u v  ->  (
x  <  y  <->  x  <  -u v ) )
73 breq2 4208 . . . . . . . . . 10  |-  ( y  =  -u v  ->  (
z  <  y  <->  z  <  -u v ) )
7473rexbidv 2718 . . . . . . . . 9  |-  ( y  =  -u v  ->  ( E. z  e.  A  z  <  y  <->  E. z  e.  A  z  <  -u v ) )
7572, 74imbi12d 312 . . . . . . . 8  |-  ( y  =  -u v  ->  (
( x  <  y  ->  E. z  e.  A  z  <  y )  <->  ( x  <  -u v  ->  E. z  e.  A  z  <  -u v ) ) )
7621, 22, 75ralxfr 4733 . . . . . . 7  |-  ( A. y  e.  RR  (
x  <  y  ->  E. z  e.  A  z  <  y )  <->  A. v  e.  RR  ( x  <  -u v  ->  E. z  e.  A  z  <  -u v ) )
77 ssel 3334 . . . . . . . . . . . . 13  |-  ( A 
C_  RR  ->  ( z  e.  A  ->  z  e.  RR ) )
7877adantrd 455 . . . . . . . . . . . 12  |-  ( A 
C_  RR  ->  ( ( z  e.  A  /\  z  <  -u v )  -> 
z  e.  RR ) )
7978pm4.71rd 617 . . . . . . . . . . 11  |-  ( A 
C_  RR  ->  ( ( z  e.  A  /\  z  <  -u v )  <->  ( z  e.  RR  /\  ( z  e.  A  /\  z  <  -u v ) ) ) )
8079exbidv 1636 . . . . . . . . . 10  |-  ( A 
C_  RR  ->  ( E. z ( z  e.  A  /\  z  <  -u v )  <->  E. z
( z  e.  RR  /\  ( z  e.  A  /\  z  <  -u v
) ) ) )
81 df-rex 2703 . . . . . . . . . 10  |-  ( E. z  e.  A  z  <  -u v  <->  E. z
( z  e.  A  /\  z  <  -u v
) )
82 renegcl 9356 . . . . . . . . . . . 12  |-  ( t  e.  RR  ->  -u t  e.  RR )
83 infm3lem 9958 . . . . . . . . . . . 12  |-  ( z  e.  RR  ->  E. t  e.  RR  z  =  -u t )
84 eleq1 2495 . . . . . . . . . . . . 13  |-  ( z  =  -u t  ->  (
z  e.  A  <->  -u t  e.  A ) )
85 breq1 4207 . . . . . . . . . . . . 13  |-  ( z  =  -u t  ->  (
z  <  -u v  <->  -u t  <  -u v ) )
8684, 85anbi12d 692 . . . . . . . . . . . 12  |-  ( z  =  -u t  ->  (
( z  e.  A  /\  z  <  -u v
)  <->  ( -u t  e.  A  /\  -u t  <  -u v ) ) )
8782, 83, 86rexxfr 4735 . . . . . . . . . . 11  |-  ( E. z  e.  RR  (
z  e.  A  /\  z  <  -u v )  <->  E. t  e.  RR  ( -u t  e.  A  /\  -u t  <  -u v ) )
88 df-rex 2703 . . . . . . . . . . 11  |-  ( E. z  e.  RR  (
z  e.  A  /\  z  <  -u v )  <->  E. z
( z  e.  RR  /\  ( z  e.  A  /\  z  <  -u v
) ) )
8987, 88bitr3i 243 . . . . . . . . . 10  |-  ( E. t  e.  RR  ( -u t  e.  A  /\  -u t  <  -u v
)  <->  E. z ( z  e.  RR  /\  (
z  e.  A  /\  z  <  -u v ) ) )
9080, 81, 893bitr4g 280 . . . . . . . . 9  |-  ( A 
C_  RR  ->  ( E. z  e.  A  z  <  -u v  <->  E. t  e.  RR  ( -u t  e.  A  /\  -u t  <  -u v ) ) )
9190imbi2d 308 . . . . . . . 8  |-  ( A 
C_  RR  ->  ( ( x  <  -u v  ->  E. z  e.  A  z  <  -u v )  <->  ( x  <  -u v  ->  E. t  e.  RR  ( -u t  e.  A  /\  -u t  <  -u v ) ) ) )
9291ralbidv 2717 . . . . . . 7  |-  ( A 
C_  RR  ->  ( A. v  e.  RR  (
x  <  -u v  ->  E. z  e.  A  z  <  -u v )  <->  A. v  e.  RR  ( x  <  -u v  ->  E. t  e.  RR  ( -u t  e.  A  /\  -u t  <  -u v ) ) ) )
9376, 92syl5bb 249 . . . . . 6  |-  ( A 
C_  RR  ->  ( A. y  e.  RR  (
x  <  y  ->  E. z  e.  A  z  <  y )  <->  A. v  e.  RR  ( x  <  -u v  ->  E. t  e.  RR  ( -u t  e.  A  /\  -u t  <  -u v ) ) ) )
9471, 93anbi12d 692 . . . . 5  |-  ( A 
C_  RR  ->  ( ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  A  z  <  y ) )  <-> 
( A. v  e.  RR  ( -u v  e.  A  ->  -.  -u v  <  x )  /\  A. v  e.  RR  (
x  <  -u v  ->  E. t  e.  RR  ( -u t  e.  A  /\  -u t  <  -u v
) ) ) ) )
9594rexbidv 2718 . . . 4  |-  ( A 
C_  RR  ->  ( E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  A  z  <  y ) )  <->  E. x  e.  RR  ( A. v  e.  RR  ( -u v  e.  A  ->  -.  -u v  <  x
)  /\  A. v  e.  RR  ( x  <  -u v  ->  E. t  e.  RR  ( -u t  e.  A  /\  -u t  <  -u v ) ) ) ) )
96 breq2 4208 . . . . . . . . . 10  |-  ( x  =  -u u  ->  ( -u v  <  x  <->  -u v  <  -u u ) )
9796notbid 286 . . . . . . . . 9  |-  ( x  =  -u u  ->  ( -.  -u v  <  x  <->  -.  -u v  <  -u u
) )
9897imbi2d 308 . . . . . . . 8  |-  ( x  =  -u u  ->  (
( -u v  e.  A  ->  -.  -u v  <  x
)  <->  ( -u v  e.  A  ->  -.  -u v  <  -u u ) ) )
9998ralbidv 2717 . . . . . . 7  |-  ( x  =  -u u  ->  ( A. v  e.  RR  ( -u v  e.  A  ->  -.  -u v  <  x
)  <->  A. v  e.  RR  ( -u v  e.  A  ->  -.  -u v  <  -u u
) ) )
100 breq1 4207 . . . . . . . . 9  |-  ( x  =  -u u  ->  (
x  <  -u v  <->  -u u  <  -u v ) )
101100imbi1d 309 . . . . . . . 8  |-  ( x  =  -u u  ->  (
( x  <  -u v  ->  E. t  e.  RR  ( -u t  e.  A  /\  -u t  <  -u v
) )  <->  ( -u u  <  -u v  ->  E. t  e.  RR  ( -u t  e.  A  /\  -u t  <  -u v ) ) ) )
102101ralbidv 2717 . . . . . . 7  |-  ( x  =  -u u  ->  ( A. v  e.  RR  ( x  <  -u v  ->  E. t  e.  RR  ( -u t  e.  A  /\  -u t  <  -u v
) )  <->  A. v  e.  RR  ( -u u  <  -u v  ->  E. t  e.  RR  ( -u t  e.  A  /\  -u t  <  -u v ) ) ) )
10399, 102anbi12d 692 . . . . . 6  |-  ( x  =  -u u  ->  (
( A. v  e.  RR  ( -u v  e.  A  ->  -.  -u v  <  x )  /\  A. v  e.  RR  (
x  <  -u v  ->  E. t  e.  RR  ( -u t  e.  A  /\  -u t  <  -u v
) ) )  <->  ( A. v  e.  RR  ( -u v  e.  A  ->  -.  -u v  <  -u u
)  /\  A. v  e.  RR  ( -u u  <  -u v  ->  E. t  e.  RR  ( -u t  e.  A  /\  -u t  <  -u v ) ) ) ) )
10431, 32, 103rexxfr 4735 . . . . 5  |-  ( E. x  e.  RR  ( A. v  e.  RR  ( -u v  e.  A  ->  -.  -u v  <  x
)  /\  A. v  e.  RR  ( x  <  -u v  ->  E. t  e.  RR  ( -u t  e.  A  /\  -u t  <  -u v ) ) )  <->  E. u  e.  RR  ( A. v  e.  RR  ( -u v  e.  A  ->  -.  -u v  <  -u u
)  /\  A. v  e.  RR  ( -u u  <  -u v  ->  E. t  e.  RR  ( -u t  e.  A  /\  -u t  <  -u v ) ) ) )
10539imbi1i 316 . . . . . . . . . . 11  |-  ( ( v  e.  { w  e.  RR  |  -u w  e.  A }  ->  -.  u  <  v )  <->  ( (
v  e.  RR  /\  -u v  e.  A )  ->  -.  u  <  v ) )
106 impexp 434 . . . . . . . . . . 11  |-  ( ( ( v  e.  RR  /\  -u v  e.  A
)  ->  -.  u  <  v )  <->  ( v  e.  RR  ->  ( -u v  e.  A  ->  -.  u  <  v ) ) )
107105, 106bitri 241 . . . . . . . . . 10  |-  ( ( v  e.  { w  e.  RR  |  -u w  e.  A }  ->  -.  u  <  v )  <->  ( v  e.  RR  ->  ( -u v  e.  A  ->  -.  u  <  v ) ) )
108107albii 1575 . . . . . . . . 9  |-  ( A. v ( v  e. 
{ w  e.  RR  |  -u w  e.  A }  ->  -.  u  <  v )  <->  A. v ( v  e.  RR  ->  ( -u v  e.  A  ->  -.  u  <  v ) ) )
109 df-ral 2702 . . . . . . . . 9  |-  ( A. v  e.  { w  e.  RR  |  -u w  e.  A }  -.  u  <  v  <->  A. v ( v  e.  { w  e.  RR  |  -u w  e.  A }  ->  -.  u  <  v ) )
110 df-ral 2702 . . . . . . . . 9  |-  ( A. v  e.  RR  ( -u v  e.  A  ->  -.  u  <  v )  <->  A. v ( v  e.  RR  ->  ( -u v  e.  A  ->  -.  u  <  v ) ) )
111108, 109, 1103bitr4ri 270 . . . . . . . 8  |-  ( A. v  e.  RR  ( -u v  e.  A  ->  -.  u  <  v )  <->  A. v  e.  { w  e.  RR  |  -u w  e.  A }  -.  u  <  v )
112 ltneg 9520 . . . . . . . . . . 11  |-  ( ( u  e.  RR  /\  v  e.  RR )  ->  ( u  <  v  <->  -u v  <  -u u
) )
113112notbid 286 . . . . . . . . . 10  |-  ( ( u  e.  RR  /\  v  e.  RR )  ->  ( -.  u  < 
v  <->  -.  -u v  <  -u u ) )
114113imbi2d 308 . . . . . . . . 9  |-  ( ( u  e.  RR  /\  v  e.  RR )  ->  ( ( -u v  e.  A  ->  -.  u  <  v )  <->  ( -u v  e.  A  ->  -.  -u v  <  -u u ) ) )
115114ralbidva 2713 . . . . . . . 8  |-  ( u  e.  RR  ->  ( A. v  e.  RR  ( -u v  e.  A  ->  -.  u  <  v
)  <->  A. v  e.  RR  ( -u v  e.  A  ->  -.  -u v  <  -u u
) ) )
116111, 115syl5bbr 251 . . . . . . 7  |-  ( u  e.  RR  ->  ( A. v  e.  { w  e.  RR  |  -u w  e.  A }  -.  u  <  v  <->  A. v  e.  RR  ( -u v  e.  A  ->  -.  -u v  <  -u u
) ) )
117 ltneg 9520 . . . . . . . . . 10  |-  ( ( v  e.  RR  /\  u  e.  RR )  ->  ( v  <  u  <->  -u u  <  -u v
) )
118117ancoms 440 . . . . . . . . 9  |-  ( ( u  e.  RR  /\  v  e.  RR )  ->  ( v  <  u  <->  -u u  <  -u v
) )
119 negeq 9290 . . . . . . . . . . . . 13  |-  ( w  =  t  ->  -u w  =  -u t )
120119eleq1d 2501 . . . . . . . . . . . 12  |-  ( w  =  t  ->  ( -u w  e.  A  <->  -u t  e.  A ) )
121120rexrab 3090 . . . . . . . . . . 11  |-  ( E. t  e.  { w  e.  RR  |  -u w  e.  A } v  < 
t  <->  E. t  e.  RR  ( -u t  e.  A  /\  v  <  t ) )
122 ltneg 9520 . . . . . . . . . . . . 13  |-  ( ( v  e.  RR  /\  t  e.  RR )  ->  ( v  <  t  <->  -u t  <  -u v
) )
123122anbi2d 685 . . . . . . . . . . . 12  |-  ( ( v  e.  RR  /\  t  e.  RR )  ->  ( ( -u t  e.  A  /\  v  <  t )  <->  ( -u t  e.  A  /\  -u t  <  -u v ) ) )
124123rexbidva 2714 . . . . . . . . . . 11  |-  ( v  e.  RR  ->  ( E. t  e.  RR  ( -u t  e.  A  /\  v  <  t )  <->  E. t  e.  RR  ( -u t  e.  A  /\  -u t  <  -u v
) ) )
125121, 124syl5bb 249 . . . . . . . . . 10  |-  ( v  e.  RR  ->  ( E. t  e.  { w  e.  RR  |  -u w  e.  A } v  < 
t  <->  E. t  e.  RR  ( -u t  e.  A  /\  -u t  <  -u v
) ) )
126125adantl 453 . . . . . . . . 9  |-  ( ( u  e.  RR  /\  v  e.  RR )  ->  ( E. t  e. 
{ w  e.  RR  |  -u w  e.  A } v  <  t  <->  E. t  e.  RR  ( -u t  e.  A  /\  -u t  <  -u v
) ) )
127118, 126imbi12d 312 . . . . . . . 8  |-  ( ( u  e.  RR  /\  v  e.  RR )  ->  ( ( v  < 
u  ->  E. t  e.  { w  e.  RR  |  -u w  e.  A } v  <  t
)  <->  ( -u u  <  -u v  ->  E. t  e.  RR  ( -u t  e.  A  /\  -u t  <  -u v ) ) ) )
128127ralbidva 2713 . . . . . . 7  |-  ( u  e.  RR  ->  ( A. v  e.  RR  ( v  <  u  ->  E. t  e.  {
w  e.  RR  |  -u w  e.  A }
v  <  t )  <->  A. v  e.  RR  ( -u u  <  -u v  ->  E. t  e.  RR  ( -u t  e.  A  /\  -u t  <  -u v
) ) ) )
129116, 128anbi12d 692 . . . . . 6  |-  ( u  e.  RR  ->  (
( A. v  e. 
{ w  e.  RR  |  -u w  e.  A }  -.  u  <  v  /\  A. v  e.  RR  ( v  <  u  ->  E. t  e.  {
w  e.  RR  |  -u w  e.  A }
v  <  t )
)  <->  ( A. v  e.  RR  ( -u v  e.  A  ->  -.  -u v  <  -u u )  /\  A. v  e.  RR  ( -u u  <  -u v  ->  E. t  e.  RR  ( -u t  e.  A  /\  -u t  <  -u v
) ) ) ) )
130129rexbiia 2730 . . . . 5  |-  ( E. u  e.  RR  ( A. v  e.  { w  e.  RR  |  -u w  e.  A }  -.  u  <  v  /\  A. v  e.  RR  ( v  < 
u  ->  E. t  e.  { w  e.  RR  |  -u w  e.  A } v  <  t
) )  <->  E. u  e.  RR  ( A. v  e.  RR  ( -u v  e.  A  ->  -.  -u v  <  -u u )  /\  A. v  e.  RR  ( -u u  <  -u v  ->  E. t  e.  RR  ( -u t  e.  A  /\  -u t  <  -u v
) ) ) )
131104, 130bitr4i 244 . . . 4  |-  ( E. x  e.  RR  ( A. v  e.  RR  ( -u v  e.  A  ->  -.  -u v  <  x
)  /\  A. v  e.  RR  ( x  <  -u v  ->  E. t  e.  RR  ( -u t  e.  A  /\  -u t  <  -u v ) ) )  <->  E. u  e.  RR  ( A. v  e.  {
w  e.  RR  |  -u w  e.  A }  -.  u  <  v  /\  A. v  e.  RR  (
v  <  u  ->  E. t  e.  { w  e.  RR  |  -u w  e.  A } v  < 
t ) ) )
13295, 131syl6bb 253 . . 3  |-  ( A 
C_  RR  ->  ( E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  A  z  <  y ) )  <->  E. u  e.  RR  ( A. v  e.  {
w  e.  RR  |  -u w  e.  A }  -.  u  <  v  /\  A. v  e.  RR  (
v  <  u  ->  E. t  e.  { w  e.  RR  |  -u w  e.  A } v  < 
t ) ) ) )
13359, 132sylibrd 226 . 2  |-  ( A 
C_  RR  ->  ( ( A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y )  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  ( x  < 
y  ->  E. z  e.  A  z  <  y ) ) ) )
1341333impib 1151 1  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  ( x  < 
y  ->  E. z  e.  A  z  <  y ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   A.wal 1549   E.wex 1550    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   E.wrex 2698   {crab 2701    C_ wss 3312   (/)c0 3620   class class class wbr 4204   RRcr 8981    < clt 9112    <_ cle 9113   -ucneg 9284
This theorem is referenced by:  infmsup  9978  infmrgelb  9980  infmrlb  9981  xrinfmsslem  10878  gtinf  26313  infrglb  27689
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-po 4495  df-so 4496  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-riota 6541  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286
  Copyright terms: Public domain W3C validator