MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infmap Structured version   Unicode version

Theorem infmap 8451
Description: An exponentiation law for infinite cardinals. Similar to Lemma 6.2 of [Jech] p. 43. (Contributed by NM, 1-Oct-2004.) (Proof shortened by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
infmap  |-  ( ( om  ~<_  A  /\  B  ~<_  A )  ->  ( A  ^m  B )  ~~  { x  |  ( x 
C_  A  /\  x  ~~  B ) } )
Distinct variable groups:    x, A    x, B

Proof of Theorem infmap
StepHypRef Expression
1 ovex 6106 . . 3  |-  ( A  ^m  B )  e. 
_V
2 numth3 8350 . . 3  |-  ( ( A  ^m  B )  e.  _V  ->  ( A  ^m  B )  e. 
dom  card )
31, 2ax-mp 8 . 2  |-  ( A  ^m  B )  e. 
dom  card
4 infmap2 8098 . 2  |-  ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e.  dom  card )  ->  ( A  ^m  B )  ~~  {
x  |  ( x 
C_  A  /\  x  ~~  B ) } )
53, 4mp3an3 1268 1  |-  ( ( om  ~<_  A  /\  B  ~<_  A )  ->  ( A  ^m  B )  ~~  { x  |  ( x 
C_  A  /\  x  ~~  B ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    e. wcel 1725   {cab 2422   _Vcvv 2956    C_ wss 3320   class class class wbr 4212   omcom 4845   dom cdm 4878  (class class class)co 6081    ^m cmap 7018    ~~ cen 7106    ~<_ cdom 7107   cardccrd 7822
This theorem is referenced by:  alephexp2  8456
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-ac2 8343
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-er 6905  df-map 7020  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-oi 7479  df-card 7826  df-acn 7829  df-ac 7997
  Copyright terms: Public domain W3C validator