MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infmrcl Unicode version

Theorem infmrcl 9733
Description: Closure of infimum of a non-empty bounded set of reals. (Contributed by NM, 8-Oct-2005.)
Assertion
Ref Expression
infmrcl  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  sup ( A ,  RR ,  `'  <  )  e.  RR )
Distinct variable group:    x, y, A

Proof of Theorem infmrcl
Dummy variables  z  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infmsup 9732 . 2  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  sup ( A ,  RR ,  `'  <  )  =  -u sup ( { v  e.  RR  |  -u v  e.  A } ,  RR ,  <  ) )
2 n0 3464 . . . . . 6  |-  ( A  =/=  (/)  <->  E. z  z  e.  A )
3 ssel 3174 . . . . . . . . . . 11  |-  ( A 
C_  RR  ->  ( z  e.  A  ->  z  e.  RR ) )
4 renegcl 9110 . . . . . . . . . . 11  |-  ( z  e.  RR  ->  -u z  e.  RR )
53, 4syl6 29 . . . . . . . . . 10  |-  ( A 
C_  RR  ->  ( z  e.  A  ->  -u z  e.  RR ) )
6 ssel2 3175 . . . . . . . . . . . . . 14  |-  ( ( A  C_  RR  /\  z  e.  A )  ->  z  e.  RR )
76recnd 8861 . . . . . . . . . . . . 13  |-  ( ( A  C_  RR  /\  z  e.  A )  ->  z  e.  CC )
87negnegd 9148 . . . . . . . . . . . 12  |-  ( ( A  C_  RR  /\  z  e.  A )  ->  -u -u z  =  z )
9 simpr 447 . . . . . . . . . . . 12  |-  ( ( A  C_  RR  /\  z  e.  A )  ->  z  e.  A )
108, 9eqeltrd 2357 . . . . . . . . . . 11  |-  ( ( A  C_  RR  /\  z  e.  A )  ->  -u -u z  e.  A )
1110ex 423 . . . . . . . . . 10  |-  ( A 
C_  RR  ->  ( z  e.  A  ->  -u -u z  e.  A ) )
125, 11jcad 519 . . . . . . . . 9  |-  ( A 
C_  RR  ->  ( z  e.  A  ->  ( -u z  e.  RR  /\  -u -u z  e.  A
) ) )
13 negeq 9044 . . . . . . . . . . . 12  |-  ( v  =  -u z  ->  -u v  =  -u -u z )
1413eleq1d 2349 . . . . . . . . . . 11  |-  ( v  =  -u z  ->  ( -u v  e.  A  <->  -u -u z  e.  A ) )
1514elrab 2923 . . . . . . . . . 10  |-  ( -u z  e.  { v  e.  RR  |  -u v  e.  A }  <->  ( -u z  e.  RR  /\  -u -u z  e.  A ) )
16 ne0i 3461 . . . . . . . . . 10  |-  ( -u z  e.  { v  e.  RR  |  -u v  e.  A }  ->  { v  e.  RR  |  -u v  e.  A }  =/=  (/) )
1715, 16sylbir 204 . . . . . . . . 9  |-  ( (
-u z  e.  RR  /\  -u -u z  e.  A
)  ->  { v  e.  RR  |  -u v  e.  A }  =/=  (/) )
1812, 17syl6 29 . . . . . . . 8  |-  ( A 
C_  RR  ->  ( z  e.  A  ->  { v  e.  RR  |  -u v  e.  A }  =/=  (/) ) )
1918exlimdv 1664 . . . . . . 7  |-  ( A 
C_  RR  ->  ( E. z  z  e.  A  ->  { v  e.  RR  |  -u v  e.  A }  =/=  (/) ) )
2019imp 418 . . . . . 6  |-  ( ( A  C_  RR  /\  E. z  z  e.  A
)  ->  { v  e.  RR  |  -u v  e.  A }  =/=  (/) )
212, 20sylan2b 461 . . . . 5  |-  ( ( A  C_  RR  /\  A  =/=  (/) )  ->  { v  e.  RR  |  -u v  e.  A }  =/=  (/) )
22213adant3 975 . . . 4  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  { v  e.  RR  |  -u v  e.  A }  =/=  (/) )
23 renegcl 9110 . . . . . . 7  |-  ( x  e.  RR  ->  -u x  e.  RR )
24 negeq 9044 . . . . . . . . . . . 12  |-  ( v  =  w  ->  -u v  =  -u w )
2524eleq1d 2349 . . . . . . . . . . 11  |-  ( v  =  w  ->  ( -u v  e.  A  <->  -u w  e.  A ) )
2625elrab 2923 . . . . . . . . . 10  |-  ( w  e.  { v  e.  RR  |  -u v  e.  A }  <->  ( w  e.  RR  /\  -u w  e.  A ) )
27 breq2 4027 . . . . . . . . . . . . . . 15  |-  ( y  =  -u w  ->  (
x  <_  y  <->  x  <_  -u w ) )
2827rspcva 2882 . . . . . . . . . . . . . 14  |-  ( (
-u w  e.  A  /\  A. y  e.  A  x  <_  y )  ->  x  <_  -u w )
2928adantll 694 . . . . . . . . . . . . 13  |-  ( ( ( w  e.  RR  /\  -u w  e.  A
)  /\  A. y  e.  A  x  <_  y )  ->  x  <_  -u w )
3029adantll 694 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR  /\  ( w  e.  RR  /\  -u w  e.  A
) )  /\  A. y  e.  A  x  <_  y )  ->  x  <_ 
-u w )
31 lenegcon2 9279 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  w  e.  RR )  ->  ( x  <_  -u w  <->  w  <_  -u x ) )
3231adantrr 697 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  ( w  e.  RR  /\  -u w  e.  A
) )  ->  (
x  <_  -u w  <->  w  <_  -u x ) )
3332adantr 451 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR  /\  ( w  e.  RR  /\  -u w  e.  A
) )  /\  A. y  e.  A  x  <_  y )  ->  (
x  <_  -u w  <->  w  <_  -u x ) )
3430, 33mpbid 201 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR  /\  ( w  e.  RR  /\  -u w  e.  A
) )  /\  A. y  e.  A  x  <_  y )  ->  w  <_ 
-u x )
3534exp31 587 . . . . . . . . . 10  |-  ( x  e.  RR  ->  (
( w  e.  RR  /\  -u w  e.  A
)  ->  ( A. y  e.  A  x  <_  y  ->  w  <_  -u x ) ) )
3626, 35syl5bi 208 . . . . . . . . 9  |-  ( x  e.  RR  ->  (
w  e.  { v  e.  RR  |  -u v  e.  A }  ->  ( A. y  e.  A  x  <_  y  ->  w  <_  -u x ) ) )
3736com23 72 . . . . . . . 8  |-  ( x  e.  RR  ->  ( A. y  e.  A  x  <_  y  ->  (
w  e.  { v  e.  RR  |  -u v  e.  A }  ->  w  <_  -u x ) ) )
3837ralrimdv 2632 . . . . . . 7  |-  ( x  e.  RR  ->  ( A. y  e.  A  x  <_  y  ->  A. w  e.  { v  e.  RR  |  -u v  e.  A } w  <_  -u x
) )
39 breq2 4027 . . . . . . . . 9  |-  ( z  =  -u x  ->  (
w  <_  z  <->  w  <_  -u x ) )
4039ralbidv 2563 . . . . . . . 8  |-  ( z  =  -u x  ->  ( A. w  e.  { v  e.  RR  |  -u v  e.  A }
w  <_  z  <->  A. w  e.  { v  e.  RR  |  -u v  e.  A } w  <_  -u x
) )
4140rspcev 2884 . . . . . . 7  |-  ( (
-u x  e.  RR  /\ 
A. w  e.  {
v  e.  RR  |  -u v  e.  A }
w  <_  -u x )  ->  E. z  e.  RR  A. w  e.  { v  e.  RR  |  -u v  e.  A }
w  <_  z )
4223, 38, 41ee12an 1353 . . . . . 6  |-  ( x  e.  RR  ->  ( A. y  e.  A  x  <_  y  ->  E. z  e.  RR  A. w  e. 
{ v  e.  RR  |  -u v  e.  A } w  <_  z ) )
4342rexlimiv 2661 . . . . 5  |-  ( E. x  e.  RR  A. y  e.  A  x  <_  y  ->  E. z  e.  RR  A. w  e. 
{ v  e.  RR  |  -u v  e.  A } w  <_  z )
44433ad2ant3 978 . . . 4  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  E. z  e.  RR  A. w  e. 
{ v  e.  RR  |  -u v  e.  A } w  <_  z )
45 ssrab2 3258 . . . . 5  |-  { v  e.  RR  |  -u v  e.  A }  C_  RR
46 suprcl 9714 . . . . 5  |-  ( ( { v  e.  RR  |  -u v  e.  A }  C_  RR  /\  {
v  e.  RR  |  -u v  e.  A }  =/=  (/)  /\  E. z  e.  RR  A. w  e. 
{ v  e.  RR  |  -u v  e.  A } w  <_  z )  ->  sup ( { v  e.  RR  |  -u v  e.  A } ,  RR ,  <  )  e.  RR )
4745, 46mp3an1 1264 . . . 4  |-  ( ( { v  e.  RR  |  -u v  e.  A }  =/=  (/)  /\  E. z  e.  RR  A. w  e. 
{ v  e.  RR  |  -u v  e.  A } w  <_  z )  ->  sup ( { v  e.  RR  |  -u v  e.  A } ,  RR ,  <  )  e.  RR )
4822, 44, 47syl2anc 642 . . 3  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  sup ( { v  e.  RR  |  -u v  e.  A } ,  RR ,  <  )  e.  RR )
4948renegcld 9210 . 2  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  -u sup ( { v  e.  RR  |  -u v  e.  A } ,  RR ,  <  )  e.  RR )
501, 49eqeltrd 2357 1  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  sup ( A ,  RR ,  `'  <  )  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   E.wex 1528    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   {crab 2547    C_ wss 3152   (/)c0 3455   class class class wbr 4023   `'ccnv 4688   supcsup 7193   RRcr 8736    < clt 8867    <_ cle 8868   -ucneg 9038
This theorem is referenced by:  infmrgelb  9734  infmrlb  9735  supminf  10305  infmxrre  10654  minveclem4c  18789  minveclem3b  18792  minveclem6  18798  pilem2  19828  pilem3  19829  pntlem3  20758  minvecolem2  21454  minvecolem3  21455  minvecolem4c  21458  minvecolem5  21460  minvecolem6  21461  pellfundre  26966  infrglb  27722  climinf  27732  stirlinglem13  27835
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040
  Copyright terms: Public domain W3C validator