MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infmrgelb Unicode version

Theorem infmrgelb 9734
Description: Any lower bound of a nonempty set of real numbers is less than or equal to its infimum. (Contributed by Jeff Hankins, 1-Sep-2013.) (Revised by Mario Carneiro, 6-Sep-2014.)
Assertion
Ref Expression
infmrgelb  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y )  /\  B  e.  RR )  ->  ( B  <_  sup ( A ,  RR ,  `'  <  )  <->  A. z  e.  A  B  <_  z ) )
Distinct variable groups:    x, y, A    z, A    z, B
Allowed substitution hints:    B( x, y)

Proof of Theorem infmrgelb
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ltso 8903 . . . . . . . 8  |-  <  Or  RR
2 cnvso 5214 . . . . . . . 8  |-  (  < 
Or  RR  <->  `'  <  Or  RR )
31, 2mpbi 199 . . . . . . 7  |-  `'  <  Or  RR
43a1i 10 . . . . . 6  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  `'  <  Or  RR )
5 infm3 9713 . . . . . . 7  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  ( x  < 
y  ->  E. w  e.  A  w  <  y ) ) )
6 vex 2791 . . . . . . . . . . . 12  |-  x  e. 
_V
7 vex 2791 . . . . . . . . . . . 12  |-  y  e. 
_V
86, 7brcnv 4864 . . . . . . . . . . 11  |-  ( x `'  <  y  <->  y  <  x )
98notbii 287 . . . . . . . . . 10  |-  ( -.  x `'  <  y  <->  -.  y  <  x )
109ralbii 2567 . . . . . . . . 9  |-  ( A. y  e.  A  -.  x `'  <  y  <->  A. y  e.  A  -.  y  <  x )
117, 6brcnv 4864 . . . . . . . . . . 11  |-  ( y `'  <  x  <->  x  <  y )
12 vex 2791 . . . . . . . . . . . . 13  |-  w  e. 
_V
137, 12brcnv 4864 . . . . . . . . . . . 12  |-  ( y `'  <  w  <->  w  <  y )
1413rexbii 2568 . . . . . . . . . . 11  |-  ( E. w  e.  A  y `'  <  w  <->  E. w  e.  A  w  <  y )
1511, 14imbi12i 316 . . . . . . . . . 10  |-  ( ( y `'  <  x  ->  E. w  e.  A  y `'  <  w )  <-> 
( x  <  y  ->  E. w  e.  A  w  <  y ) )
1615ralbii 2567 . . . . . . . . 9  |-  ( A. y  e.  RR  (
y `'  <  x  ->  E. w  e.  A  y `'  <  w )  <->  A. y  e.  RR  ( x  <  y  ->  E. w  e.  A  w  <  y ) )
1710, 16anbi12i 678 . . . . . . . 8  |-  ( ( A. y  e.  A  -.  x `'  <  y  /\  A. y  e.  RR  ( y `'  <  x  ->  E. w  e.  A  y `'  <  w ) )  <->  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  ( x  < 
y  ->  E. w  e.  A  w  <  y ) ) )
1817rexbii 2568 . . . . . . 7  |-  ( E. x  e.  RR  ( A. y  e.  A  -.  x `'  <  y  /\  A. y  e.  RR  ( y `'  <  x  ->  E. w  e.  A  y `'  <  w ) )  <->  E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. w  e.  A  w  <  y ) ) )
195, 18sylibr 203 . . . . . 6  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  E. x  e.  RR  ( A. y  e.  A  -.  x `'  <  y  /\  A. y  e.  RR  (
y `'  <  x  ->  E. w  e.  A  y `'  <  w ) ) )
20 simp1 955 . . . . . 6  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  A  C_  RR )
214, 19, 20suplub2 7212 . . . . 5  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y )  /\  B  e.  RR )  ->  ( B `'  <  sup ( A ,  RR ,  `'  <  )  <->  E. w  e.  A  B `'  <  w ) )
2221notbid 285 . . . 4  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y )  /\  B  e.  RR )  ->  ( -.  B `'  <  sup ( A ,  RR ,  `'  <  )  <->  -.  E. w  e.  A  B `'  <  w ) )
23 ralnex 2553 . . . 4  |-  ( A. w  e.  A  -.  B `'  <  w  <->  -.  E. w  e.  A  B `'  <  w )
2422, 23syl6bbr 254 . . 3  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y )  /\  B  e.  RR )  ->  ( -.  B `'  <  sup ( A ,  RR ,  `'  <  )  <->  A. w  e.  A  -.  B `'  <  w ) )
25 simpr 447 . . . 4  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y )  /\  B  e.  RR )  ->  B  e.  RR )
26 infmrcl 9733 . . . . 5  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  sup ( A ,  RR ,  `'  <  )  e.  RR )
2726adantr 451 . . . 4  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y )  /\  B  e.  RR )  ->  sup ( A ,  RR ,  `'  <  )  e.  RR )
28 lenlt 8901 . . . . 5  |-  ( ( B  e.  RR  /\  sup ( A ,  RR ,  `'  <  )  e.  RR )  ->  ( B  <_  sup ( A ,  RR ,  `'  <  )  <->  -.  sup ( A ,  RR ,  `'  <  )  <  B ) )
29 brcnvg 4862 . . . . . 6  |-  ( ( B  e.  RR  /\  sup ( A ,  RR ,  `'  <  )  e.  RR )  ->  ( B `'  <  sup ( A ,  RR ,  `'  <  )  <->  sup ( A ,  RR ,  `'  <  )  <  B
) )
3029notbid 285 . . . . 5  |-  ( ( B  e.  RR  /\  sup ( A ,  RR ,  `'  <  )  e.  RR )  ->  ( -.  B `'  <  sup ( A ,  RR ,  `'  <  )  <->  -.  sup ( A ,  RR ,  `'  <  )  <  B
) )
3128, 30bitr4d 247 . . . 4  |-  ( ( B  e.  RR  /\  sup ( A ,  RR ,  `'  <  )  e.  RR )  ->  ( B  <_  sup ( A ,  RR ,  `'  <  )  <->  -.  B `'  <  sup ( A ,  RR ,  `'  <  ) ) )
3225, 27, 31syl2anc 642 . . 3  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y )  /\  B  e.  RR )  ->  ( B  <_  sup ( A ,  RR ,  `'  <  )  <->  -.  B `'  <  sup ( A ,  RR ,  `'  <  ) ) )
3325adantr 451 . . . . 5  |-  ( ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y )  /\  B  e.  RR )  /\  w  e.  A )  ->  B  e.  RR )
34 simpl1 958 . . . . . 6  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y )  /\  B  e.  RR )  ->  A  C_  RR )
3534sselda 3180 . . . . 5  |-  ( ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y )  /\  B  e.  RR )  /\  w  e.  A )  ->  w  e.  RR )
36 lenlt 8901 . . . . . 6  |-  ( ( B  e.  RR  /\  w  e.  RR )  ->  ( B  <_  w  <->  -.  w  <  B ) )
37 brcnvg 4862 . . . . . . 7  |-  ( ( B  e.  RR  /\  w  e.  RR )  ->  ( B `'  <  w  <-> 
w  <  B )
)
3837notbid 285 . . . . . 6  |-  ( ( B  e.  RR  /\  w  e.  RR )  ->  ( -.  B `'  <  w  <->  -.  w  <  B ) )
3936, 38bitr4d 247 . . . . 5  |-  ( ( B  e.  RR  /\  w  e.  RR )  ->  ( B  <_  w  <->  -.  B `'  <  w
) )
4033, 35, 39syl2anc 642 . . . 4  |-  ( ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y )  /\  B  e.  RR )  /\  w  e.  A )  ->  ( B  <_  w  <->  -.  B `'  <  w ) )
4140ralbidva 2559 . . 3  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y )  /\  B  e.  RR )  ->  ( A. w  e.  A  B  <_  w  <->  A. w  e.  A  -.  B `'  <  w ) )
4224, 32, 413bitr4d 276 . 2  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y )  /\  B  e.  RR )  ->  ( B  <_  sup ( A ,  RR ,  `'  <  )  <->  A. w  e.  A  B  <_  w ) )
43 breq2 4027 . . 3  |-  ( w  =  z  ->  ( B  <_  w  <->  B  <_  z ) )
4443cbvralv 2764 . 2  |-  ( A. w  e.  A  B  <_  w  <->  A. z  e.  A  B  <_  z )
4542, 44syl6bb 252 1  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y )  /\  B  e.  RR )  ->  ( B  <_  sup ( A ,  RR ,  `'  <  )  <->  A. z  e.  A  B  <_  z ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544    C_ wss 3152   (/)c0 3455   class class class wbr 4023    Or wor 4313   `'ccnv 4688   supcsup 7193   RRcr 8736    < clt 8867    <_ cle 8868
This theorem is referenced by:  infmxrre  10654  minveclem2  18790  minveclem3b  18792  minveclem4  18796  minveclem6  18798  pilem2  19828  pilem3  19829  pntlem3  20758  minvecolem2  21454  minvecolem4  21459  minvecolem5  21460  minvecolem6  21461  infmrgelbi  26963
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040
  Copyright terms: Public domain W3C validator