MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infmssuzcl Structured version   Unicode version

Theorem infmssuzcl 10551
Description: The infimum of a subset of a set of upper integers belongs to the subset. (Contributed by NM, 11-Oct-2005.)
Assertion
Ref Expression
infmssuzcl  |-  ( ( S  C_  ( ZZ>= `  M )  /\  S  =/=  (/) )  ->  sup ( S ,  RR ,  `'  <  )  e.  S
)

Proof of Theorem infmssuzcl
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzssz 10497 . . . . 5  |-  ( ZZ>= `  M )  C_  ZZ
2 zssre 10281 . . . . 5  |-  ZZ  C_  RR
31, 2sstri 3349 . . . 4  |-  ( ZZ>= `  M )  C_  RR
4 sstr 3348 . . . 4  |-  ( ( S  C_  ( ZZ>= `  M )  /\  ( ZZ>=
`  M )  C_  RR )  ->  S  C_  RR )
53, 4mpan2 653 . . 3  |-  ( S 
C_  ( ZZ>= `  M
)  ->  S  C_  RR )
65adantr 452 . 2  |-  ( ( S  C_  ( ZZ>= `  M )  /\  S  =/=  (/) )  ->  S  C_  RR )
7 uzwo 10531 . 2  |-  ( ( S  C_  ( ZZ>= `  M )  /\  S  =/=  (/) )  ->  E. j  e.  S  A. k  e.  S  j  <_  k )
8 lbinfmcl 9954 . 2  |-  ( ( S  C_  RR  /\  E. j  e.  S  A. k  e.  S  j  <_  k )  ->  sup ( S ,  RR ,  `'  <  )  e.  S
)
96, 7, 8syl2anc 643 1  |-  ( ( S  C_  ( ZZ>= `  M )  /\  S  =/=  (/) )  ->  sup ( S ,  RR ,  `'  <  )  e.  S
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    e. wcel 1725    =/= wne 2598   A.wral 2697   E.wrex 2698    C_ wss 3312   (/)c0 3620   class class class wbr 4204   `'ccnv 4869   ` cfv 5446   supcsup 7437   RRcr 8981    < clt 9112    <_ cle 9113   ZZcz 10274   ZZ>=cuz 10480
This theorem is referenced by:  zsupss  10557  uzwo3  10561  divalglem2  12907  bitsfzolem  12938  bezoutlem2  13031  odzcllem  13170  4sqlem13  13317  4sqlem14  13318  4sqlem17  13321  4sqlem18  13322  vdwnnlem3  13357  ramcl2lem  13369  ramtcl  13370  odlem1  15165  odlem2  15169  gexlem1  15205  gexlem2  15208  zlpirlem2  16761  zlpirlem3  16762  ovolicc2lem4  19408  iundisj  19434  ig1peu  20086  ig1pdvds  20091  elqaalem1  20228  elqaalem3  20230  ftalem4  20850  ftalem5  20851  iundisjf  24021  iundisjfi  24144  dgraalem  27318
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-sup 7438  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-n0 10214  df-z 10275  df-uz 10481
  Copyright terms: Public domain W3C validator