MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infmsup Unicode version

Theorem infmsup 9732
Description: The infimum (expressed as supremum with converse 'less-than') of a set of reals  A is the negative of the supremum of the negatives of its elements. The antecedent ensures that  A is nonempty and has a lower bound. (Contributed by NM, 14-Jun-2005.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
infmsup  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  sup ( A ,  RR ,  `'  <  )  =  -u sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  <  ) )
Distinct variable group:    x, y, z, A

Proof of Theorem infmsup
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ltso 8903 . . . . . . 7  |-  <  Or  RR
2 cnvso 5214 . . . . . . 7  |-  (  < 
Or  RR  <->  `'  <  Or  RR )
31, 2mpbi 199 . . . . . 6  |-  `'  <  Or  RR
43a1i 10 . . . . 5  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  `'  <  Or  RR )
5 infm3 9713 . . . . . 6  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  ( x  < 
y  ->  E. w  e.  A  w  <  y ) ) )
6 vex 2791 . . . . . . . . . . 11  |-  x  e. 
_V
7 vex 2791 . . . . . . . . . . 11  |-  y  e. 
_V
86, 7brcnv 4864 . . . . . . . . . 10  |-  ( x `'  <  y  <->  y  <  x )
98notbii 287 . . . . . . . . 9  |-  ( -.  x `'  <  y  <->  -.  y  <  x )
109ralbii 2567 . . . . . . . 8  |-  ( A. y  e.  A  -.  x `'  <  y  <->  A. y  e.  A  -.  y  <  x )
117, 6brcnv 4864 . . . . . . . . . 10  |-  ( y `'  <  x  <->  x  <  y )
12 vex 2791 . . . . . . . . . . . 12  |-  w  e. 
_V
137, 12brcnv 4864 . . . . . . . . . . 11  |-  ( y `'  <  w  <->  w  <  y )
1413rexbii 2568 . . . . . . . . . 10  |-  ( E. w  e.  A  y `'  <  w  <->  E. w  e.  A  w  <  y )
1511, 14imbi12i 316 . . . . . . . . 9  |-  ( ( y `'  <  x  ->  E. w  e.  A  y `'  <  w )  <-> 
( x  <  y  ->  E. w  e.  A  w  <  y ) )
1615ralbii 2567 . . . . . . . 8  |-  ( A. y  e.  RR  (
y `'  <  x  ->  E. w  e.  A  y `'  <  w )  <->  A. y  e.  RR  ( x  <  y  ->  E. w  e.  A  w  <  y ) )
1710, 16anbi12i 678 . . . . . . 7  |-  ( ( A. y  e.  A  -.  x `'  <  y  /\  A. y  e.  RR  ( y `'  <  x  ->  E. w  e.  A  y `'  <  w ) )  <->  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  ( x  < 
y  ->  E. w  e.  A  w  <  y ) ) )
1817rexbii 2568 . . . . . 6  |-  ( E. x  e.  RR  ( A. y  e.  A  -.  x `'  <  y  /\  A. y  e.  RR  ( y `'  <  x  ->  E. w  e.  A  y `'  <  w ) )  <->  E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. w  e.  A  w  <  y ) ) )
195, 18sylibr 203 . . . . 5  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  E. x  e.  RR  ( A. y  e.  A  -.  x `'  <  y  /\  A. y  e.  RR  (
y `'  <  x  ->  E. w  e.  A  y `'  <  w ) ) )
204, 19supcl 7209 . . . 4  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  sup ( A ,  RR ,  `'  <  )  e.  RR )
2120recnd 8861 . . 3  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  sup ( A ,  RR ,  `'  <  )  e.  CC )
2221negnegd 9148 . 2  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  -u -u sup ( A ,  RR ,  `'  <  )  =  sup ( A ,  RR ,  `'  <  ) )
23 eqid 2283 . . . . . . . 8  |-  ( z  e.  RR  |->  -u z
)  =  ( z  e.  RR  |->  -u z
)
2423mptpreima 5166 . . . . . . 7  |-  ( `' ( z  e.  RR  |->  -u z ) " A
)  =  { z  e.  RR  |  -u z  e.  A }
2523negiso 9730 . . . . . . . . 9  |-  ( ( z  e.  RR  |->  -u z )  Isom  <  ,  `'  <  ( RR ,  RR )  /\  `' ( z  e.  RR  |->  -u z )  =  ( z  e.  RR  |->  -u z ) )
2625simpri 448 . . . . . . . 8  |-  `' ( z  e.  RR  |->  -u z )  =  ( z  e.  RR  |->  -u z )
2726imaeq1i 5009 . . . . . . 7  |-  ( `' ( z  e.  RR  |->  -u z ) " A
)  =  ( ( z  e.  RR  |->  -u z ) " A
)
2824, 27eqtr3i 2305 . . . . . 6  |-  { z  e.  RR  |  -u z  e.  A }  =  ( ( z  e.  RR  |->  -u z
) " A )
2928supeq1i 7200 . . . . 5  |-  sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  <  )  =  sup (
( ( z  e.  RR  |->  -u z ) " A ) ,  RR ,  <  )
3025simpli 444 . . . . . . . . 9  |-  ( z  e.  RR  |->  -u z
)  Isom  <  ,  `'  <  ( RR ,  RR )
31 isocnv 5827 . . . . . . . . 9  |-  ( ( z  e.  RR  |->  -u z )  Isom  <  ,  `'  <  ( RR ,  RR )  ->  `' ( z  e.  RR  |->  -u z )  Isom  `'  <  ,  <  ( RR ,  RR ) )
3230, 31ax-mp 8 . . . . . . . 8  |-  `' ( z  e.  RR  |->  -u z )  Isom  `'  <  ,  <  ( RR ,  RR )
33 isoeq1 5816 . . . . . . . . 9  |-  ( `' ( z  e.  RR  |->  -u z )  =  ( z  e.  RR  |->  -u z )  ->  ( `' ( z  e.  RR  |->  -u z )  Isom  `'  <  ,  <  ( RR ,  RR )  <->  ( z  e.  RR  |->  -u z )  Isom  `'  <  ,  <  ( RR ,  RR ) ) )
3426, 33ax-mp 8 . . . . . . . 8  |-  ( `' ( z  e.  RR  |->  -u z )  Isom  `'  <  ,  <  ( RR ,  RR )  <->  ( z  e.  RR  |->  -u z )  Isom  `'  <  ,  <  ( RR ,  RR )
)
3532, 34mpbi 199 . . . . . . 7  |-  ( z  e.  RR  |->  -u z
)  Isom  `'  <  ,  <  ( RR ,  RR )
3635a1i 10 . . . . . 6  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  ( z  e.  RR  |->  -u z )  Isom  `'  <  ,  <  ( RR ,  RR )
)
37 simp1 955 . . . . . 6  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  A  C_  RR )
3836, 37, 19, 4supiso 7223 . . . . 5  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  sup (
( ( z  e.  RR  |->  -u z ) " A ) ,  RR ,  <  )  =  ( ( z  e.  RR  |->  -u z ) `  sup ( A ,  RR ,  `'  <  ) ) )
3929, 38syl5eq 2327 . . . 4  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  <  )  =  ( ( z  e.  RR  |->  -u z ) `  sup ( A ,  RR ,  `'  <  ) ) )
40 negeq 9044 . . . . . 6  |-  ( z  =  sup ( A ,  RR ,  `'  <  )  ->  -u z  = 
-u sup ( A ,  RR ,  `'  <  ) )
41 negex 9050 . . . . . 6  |-  -u sup ( A ,  RR ,  `'  <  )  e.  _V
4240, 23, 41fvmpt 5602 . . . . 5  |-  ( sup ( A ,  RR ,  `'  <  )  e.  RR  ->  ( (
z  e.  RR  |->  -u z ) `  sup ( A ,  RR ,  `'  <  ) )  = 
-u sup ( A ,  RR ,  `'  <  ) )
4320, 42syl 15 . . . 4  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  ( (
z  e.  RR  |->  -u z ) `  sup ( A ,  RR ,  `'  <  ) )  = 
-u sup ( A ,  RR ,  `'  <  ) )
4439, 43eqtr2d 2316 . . 3  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  -u sup ( A ,  RR ,  `'  <  )  =  sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  <  ) )
4544negeqd 9046 . 2  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  -u -u sup ( A ,  RR ,  `'  <  )  =  -u sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  <  ) )
4622, 45eqtr3d 2317 1  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  sup ( A ,  RR ,  `'  <  )  =  -u sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  <  ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   {crab 2547    C_ wss 3152   (/)c0 3455   class class class wbr 4023    e. cmpt 4077    Or wor 4313   `'ccnv 4688   "cima 4692   ` cfv 5255    Isom wiso 5256   supcsup 7193   RRcr 8736    < clt 8867    <_ cle 8868   -ucneg 9038
This theorem is referenced by:  infmrcl  9733  supminf  10305  mbfinf  19020
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040
  Copyright terms: Public domain W3C validator