MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infpnlem1 Structured version   Unicode version

Theorem infpnlem1 13279
Description: Lemma for infpn 13281. The smallest divisor (greater than 1)  M of  N !  + 
1 is a prime greater than  N. (Contributed by NM, 5-May-2005.)
Hypothesis
Ref Expression
infpnlem.1  |-  K  =  ( ( ! `  N )  +  1 )
Assertion
Ref Expression
infpnlem1  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( ( ( 1  <  M  /\  ( K  /  M )  e.  NN )  /\  A. j  e.  NN  (
( 1  <  j  /\  ( K  /  j
)  e.  NN )  ->  M  <_  j
) )  ->  ( N  <  M  /\  A. j  e.  NN  (
( M  /  j
)  e.  NN  ->  ( j  =  1  \/  j  =  M ) ) ) ) )
Distinct variable groups:    j, N    j, M    j, K

Proof of Theorem infpnlem1
StepHypRef Expression
1 nnre 10008 . . . . . . . 8  |-  ( M  e.  NN  ->  M  e.  RR )
2 nnre 10008 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  RR )
3 lenlt 9155 . . . . . . . 8  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( M  <_  N  <->  -.  N  <  M ) )
41, 2, 3syl2anr 466 . . . . . . 7  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( M  <_  N  <->  -.  N  <  M ) )
54adantr 453 . . . . . 6  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  1  <  M
)  ->  ( M  <_  N  <->  -.  N  <  M ) )
6 nnnn0 10229 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  NN0 )
7 facndiv 11580 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  M  e.  NN )  /\  ( 1  < 
M  /\  M  <_  N ) )  ->  -.  ( ( ( ! `
 N )  +  1 )  /  M
)  e.  ZZ )
8 infpnlem.1 . . . . . . . . . . 11  |-  K  =  ( ( ! `  N )  +  1 )
98oveq1i 6092 . . . . . . . . . 10  |-  ( K  /  M )  =  ( ( ( ! `
 N )  +  1 )  /  M
)
10 nnz 10304 . . . . . . . . . 10  |-  ( ( K  /  M )  e.  NN  ->  ( K  /  M )  e.  ZZ )
119, 10syl5eqelr 2522 . . . . . . . . 9  |-  ( ( K  /  M )  e.  NN  ->  (
( ( ! `  N )  +  1 )  /  M )  e.  ZZ )
127, 11nsyl 116 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  M  e.  NN )  /\  ( 1  < 
M  /\  M  <_  N ) )  ->  -.  ( K  /  M
)  e.  NN )
136, 12sylanl1 633 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  ( 1  < 
M  /\  M  <_  N ) )  ->  -.  ( K  /  M
)  e.  NN )
1413expr 600 . . . . . 6  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  1  <  M
)  ->  ( M  <_  N  ->  -.  ( K  /  M )  e.  NN ) )
155, 14sylbird 228 . . . . 5  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  1  <  M
)  ->  ( -.  N  <  M  ->  -.  ( K  /  M
)  e.  NN ) )
1615con4d 100 . . . 4  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  1  <  M
)  ->  ( ( K  /  M )  e.  NN  ->  N  <  M ) )
1716expimpd 588 . . 3  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( ( 1  < 
M  /\  ( K  /  M )  e.  NN )  ->  N  <  M
) )
1817adantrd 456 . 2  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( ( ( 1  <  M  /\  ( K  /  M )  e.  NN )  /\  A. j  e.  NN  (
( 1  <  j  /\  ( K  /  j
)  e.  NN )  ->  M  <_  j
) )  ->  N  <  M ) )
19 faccl 11577 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
206, 19syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  NN  ->  ( ! `  N )  e.  NN )
2120peano2nnd 10018 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN  ->  (
( ! `  N
)  +  1 )  e.  NN )
228, 21syl5eqel 2521 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN  ->  K  e.  NN )
2322nncnd 10017 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN  ->  K  e.  CC )
24 nndivtr 10042 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( j  e.  NN  /\  M  e.  NN  /\  K  e.  CC )  /\  ( ( M  / 
j )  e.  NN  /\  ( K  /  M
)  e.  NN ) )  ->  ( K  /  j )  e.  NN )
2524ex 425 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( j  e.  NN  /\  M  e.  NN  /\  K  e.  CC )  ->  (
( ( M  / 
j )  e.  NN  /\  ( K  /  M
)  e.  NN )  ->  ( K  / 
j )  e.  NN ) )
26253com13 1159 . . . . . . . . . . . . . . . . . . 19  |-  ( ( K  e.  CC  /\  M  e.  NN  /\  j  e.  NN )  ->  (
( ( M  / 
j )  e.  NN  /\  ( K  /  M
)  e.  NN )  ->  ( K  / 
j )  e.  NN ) )
27263expa 1154 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( K  e.  CC  /\  M  e.  NN )  /\  j  e.  NN )  ->  ( ( ( M  /  j )  e.  NN  /\  ( K  /  M )  e.  NN )  ->  ( K  /  j )  e.  NN ) )
2823, 27sylanl1 633 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  j  e.  NN )  ->  ( ( ( M  /  j )  e.  NN  /\  ( K  /  M )  e.  NN )  ->  ( K  /  j )  e.  NN ) )
2928adantrl 698 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  ( j  <_  M  /\  j  e.  NN ) )  ->  (
( ( M  / 
j )  e.  NN  /\  ( K  /  M
)  e.  NN )  ->  ( K  / 
j )  e.  NN ) )
30 nnre 10008 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( j  e.  NN  ->  j  e.  RR )
31 letri3 9161 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( j  e.  RR  /\  M  e.  RR )  ->  ( j  =  M  <-> 
( j  <_  M  /\  M  <_  j ) ) )
3230, 1, 31syl2an 465 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( j  e.  NN  /\  M  e.  NN )  ->  ( j  =  M  <-> 
( j  <_  M  /\  M  <_  j ) ) )
3332biimprd 216 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( j  e.  NN  /\  M  e.  NN )  ->  ( ( j  <_  M  /\  M  <_  j
)  ->  j  =  M ) )
3433exp4b 592 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  e.  NN  ->  ( M  e.  NN  ->  ( j  <_  M  ->  ( M  <_  j  ->  j  =  M ) ) ) )
3534com3l 78 . . . . . . . . . . . . . . . . . . . 20  |-  ( M  e.  NN  ->  (
j  <_  M  ->  ( j  e.  NN  ->  ( M  <_  j  ->  j  =  M ) ) ) )
3635imp32 424 . . . . . . . . . . . . . . . . . . 19  |-  ( ( M  e.  NN  /\  ( j  <_  M  /\  j  e.  NN ) )  ->  ( M  <_  j  ->  j  =  M ) )
3736adantll 696 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  ( j  <_  M  /\  j  e.  NN ) )  ->  ( M  <_  j  ->  j  =  M ) )
3837imim2d 51 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  ( j  <_  M  /\  j  e.  NN ) )  ->  (
( ( 1  < 
j  /\  ( K  /  j )  e.  NN )  ->  M  <_  j )  ->  (
( 1  <  j  /\  ( K  /  j
)  e.  NN )  ->  j  =  M ) ) )
3938com23 75 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  ( j  <_  M  /\  j  e.  NN ) )  ->  (
( 1  <  j  /\  ( K  /  j
)  e.  NN )  ->  ( ( ( 1  <  j  /\  ( K  /  j
)  e.  NN )  ->  M  <_  j
)  ->  j  =  M ) ) )
4029, 39sylan2d 470 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  ( j  <_  M  /\  j  e.  NN ) )  ->  (
( 1  <  j  /\  ( ( M  / 
j )  e.  NN  /\  ( K  /  M
)  e.  NN ) )  ->  ( (
( 1  <  j  /\  ( K  /  j
)  e.  NN )  ->  M  <_  j
)  ->  j  =  M ) ) )
4140exp4d 594 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  ( j  <_  M  /\  j  e.  NN ) )  ->  (
1  <  j  ->  ( ( M  /  j
)  e.  NN  ->  ( ( K  /  M
)  e.  NN  ->  ( ( ( 1  < 
j  /\  ( K  /  j )  e.  NN )  ->  M  <_  j )  ->  j  =  M ) ) ) ) )
4241com24 84 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  ( j  <_  M  /\  j  e.  NN ) )  ->  (
( K  /  M
)  e.  NN  ->  ( ( M  /  j
)  e.  NN  ->  ( 1  <  j  -> 
( ( ( 1  <  j  /\  ( K  /  j )  e.  NN )  ->  M  <_  j )  ->  j  =  M ) ) ) ) )
4342exp32 590 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( j  <_  M  ->  ( j  e.  NN  ->  ( ( K  /  M )  e.  NN  ->  ( ( M  / 
j )  e.  NN  ->  ( 1  <  j  ->  ( ( ( 1  <  j  /\  ( K  /  j )  e.  NN )  ->  M  <_  j )  ->  j  =  M ) ) ) ) ) ) )
4443com24 84 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( ( K  /  M )  e.  NN  ->  ( j  e.  NN  ->  ( j  <_  M  ->  ( ( M  / 
j )  e.  NN  ->  ( 1  <  j  ->  ( ( ( 1  <  j  /\  ( K  /  j )  e.  NN )  ->  M  <_  j )  ->  j  =  M ) ) ) ) ) ) )
4544imp31 423 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  M  e.  NN )  /\  ( K  /  M )  e.  NN )  /\  j  e.  NN )  ->  (
j  <_  M  ->  ( ( M  /  j
)  e.  NN  ->  ( 1  <  j  -> 
( ( ( 1  <  j  /\  ( K  /  j )  e.  NN )  ->  M  <_  j )  ->  j  =  M ) ) ) ) )
4645com14 85 . . . . . . . . 9  |-  ( 1  <  j  ->  (
j  <_  M  ->  ( ( M  /  j
)  e.  NN  ->  ( ( ( ( N  e.  NN  /\  M  e.  NN )  /\  ( K  /  M )  e.  NN )  /\  j  e.  NN )  ->  (
( ( 1  < 
j  /\  ( K  /  j )  e.  NN )  ->  M  <_  j )  ->  j  =  M ) ) ) ) )
47463imp 1148 . . . . . . . 8  |-  ( ( 1  <  j  /\  j  <_  M  /\  ( M  /  j )  e.  NN )  ->  (
( ( ( N  e.  NN  /\  M  e.  NN )  /\  ( K  /  M )  e.  NN )  /\  j  e.  NN )  ->  (
( ( 1  < 
j  /\  ( K  /  j )  e.  NN )  ->  M  <_  j )  ->  j  =  M ) ) )
4847com3l 78 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  M  e.  NN )  /\  ( K  /  M )  e.  NN )  /\  j  e.  NN )  ->  (
( ( 1  < 
j  /\  ( K  /  j )  e.  NN )  ->  M  <_  j )  ->  (
( 1  <  j  /\  j  <_  M  /\  ( M  /  j
)  e.  NN )  ->  j  =  M ) ) )
4948ralimdva 2785 . . . . . 6  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  ( K  /  M )  e.  NN )  ->  ( A. j  e.  NN  ( ( 1  <  j  /\  ( K  /  j )  e.  NN )  ->  M  <_  j )  ->  A. j  e.  NN  ( ( 1  <  j  /\  j  <_  M  /\  ( M  /  j )  e.  NN )  ->  j  =  M ) ) )
5049ex 425 . . . . 5  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( ( K  /  M )  e.  NN  ->  ( A. j  e.  NN  ( ( 1  <  j  /\  ( K  /  j )  e.  NN )  ->  M  <_  j )  ->  A. j  e.  NN  ( ( 1  <  j  /\  j  <_  M  /\  ( M  /  j )  e.  NN )  ->  j  =  M ) ) ) )
5150adantld 455 . . . 4  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( ( 1  < 
M  /\  ( K  /  M )  e.  NN )  ->  ( A. j  e.  NN  ( ( 1  <  j  /\  ( K  /  j )  e.  NN )  ->  M  <_  j )  ->  A. j  e.  NN  ( ( 1  <  j  /\  j  <_  M  /\  ( M  /  j )  e.  NN )  ->  j  =  M ) ) ) )
5251imp3a 422 . . 3  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( ( ( 1  <  M  /\  ( K  /  M )  e.  NN )  /\  A. j  e.  NN  (
( 1  <  j  /\  ( K  /  j
)  e.  NN )  ->  M  <_  j
) )  ->  A. j  e.  NN  ( ( 1  <  j  /\  j  <_  M  /\  ( M  /  j )  e.  NN )  ->  j  =  M ) ) )
53 prime 10351 . . . 4  |-  ( M  e.  NN  ->  ( A. j  e.  NN  ( ( M  / 
j )  e.  NN  ->  ( j  =  1  \/  j  =  M ) )  <->  A. j  e.  NN  ( ( 1  <  j  /\  j  <_  M  /\  ( M  /  j )  e.  NN )  ->  j  =  M ) ) )
5453adantl 454 . . 3  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( A. j  e.  NN  ( ( M  /  j )  e.  NN  ->  ( j  =  1  \/  j  =  M ) )  <->  A. j  e.  NN  ( ( 1  <  j  /\  j  <_  M  /\  ( M  /  j )  e.  NN )  ->  j  =  M ) ) )
5552, 54sylibrd 227 . 2  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( ( ( 1  <  M  /\  ( K  /  M )  e.  NN )  /\  A. j  e.  NN  (
( 1  <  j  /\  ( K  /  j
)  e.  NN )  ->  M  <_  j
) )  ->  A. j  e.  NN  ( ( M  /  j )  e.  NN  ->  ( j  =  1  \/  j  =  M ) ) ) )
5618, 55jcad 521 1  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( ( ( 1  <  M  /\  ( K  /  M )  e.  NN )  /\  A. j  e.  NN  (
( 1  <  j  /\  ( K  /  j
)  e.  NN )  ->  M  <_  j
) )  ->  ( N  <  M  /\  A. j  e.  NN  (
( M  /  j
)  e.  NN  ->  ( j  =  1  \/  j  =  M ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    \/ wo 359    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   A.wral 2706   class class class wbr 4213   ` cfv 5455  (class class class)co 6082   CCcc 8989   RRcr 8990   1c1 8992    + caddc 8994    < clt 9121    <_ cle 9122    / cdiv 9678   NNcn 10001   NN0cn0 10222   ZZcz 10283   !cfa 11567
This theorem is referenced by:  infpnlem2  13280
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702  ax-cnex 9047  ax-resscn 9048  ax-1cn 9049  ax-icn 9050  ax-addcl 9051  ax-addrcl 9052  ax-mulcl 9053  ax-mulrcl 9054  ax-mulcom 9055  ax-addass 9056  ax-mulass 9057  ax-distr 9058  ax-i2m1 9059  ax-1ne0 9060  ax-1rid 9061  ax-rnegex 9062  ax-rrecex 9063  ax-cnre 9064  ax-pre-lttri 9065  ax-pre-lttrn 9066  ax-pre-ltadd 9067  ax-pre-mulgt0 9068
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2711  df-rex 2712  df-reu 2713  df-rmo 2714  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-tp 3823  df-op 3824  df-uni 4017  df-iun 4096  df-br 4214  df-opab 4268  df-mpt 4269  df-tr 4304  df-eprel 4495  df-id 4499  df-po 4504  df-so 4505  df-fr 4542  df-we 4544  df-ord 4585  df-on 4586  df-lim 4587  df-suc 4588  df-om 4847  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-2nd 6351  df-riota 6550  df-recs 6634  df-rdg 6669  df-er 6906  df-en 7111  df-dom 7112  df-sdom 7113  df-pnf 9123  df-mnf 9124  df-xr 9125  df-ltxr 9126  df-le 9127  df-sub 9294  df-neg 9295  df-div 9679  df-nn 10002  df-n0 10223  df-z 10284  df-uz 10490  df-seq 11325  df-fac 11568
  Copyright terms: Public domain W3C validator