MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infpnlem1 Unicode version

Theorem infpnlem1 12957
Description: Lemma for infpn 12959. The smallest divisor (greater than 1)  M of  N !  + 
1 is a prime greater than  N. (Contributed by NM, 5-May-2005.)
Hypothesis
Ref Expression
infpnlem.1  |-  K  =  ( ( ! `  N )  +  1 )
Assertion
Ref Expression
infpnlem1  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( ( ( 1  <  M  /\  ( K  /  M )  e.  NN )  /\  A. j  e.  NN  (
( 1  <  j  /\  ( K  /  j
)  e.  NN )  ->  M  <_  j
) )  ->  ( N  <  M  /\  A. j  e.  NN  (
( M  /  j
)  e.  NN  ->  ( j  =  1  \/  j  =  M ) ) ) ) )
Distinct variable groups:    j, N    j, M    j, K

Proof of Theorem infpnlem1
StepHypRef Expression
1 nnre 9753 . . . . . . . 8  |-  ( M  e.  NN  ->  M  e.  RR )
2 nnre 9753 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  RR )
3 lenlt 8901 . . . . . . . 8  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( M  <_  N  <->  -.  N  <  M ) )
41, 2, 3syl2anr 464 . . . . . . 7  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( M  <_  N  <->  -.  N  <  M ) )
54adantr 451 . . . . . 6  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  1  <  M
)  ->  ( M  <_  N  <->  -.  N  <  M ) )
6 nnnn0 9972 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  NN0 )
7 facndiv 11301 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  M  e.  NN )  /\  ( 1  < 
M  /\  M  <_  N ) )  ->  -.  ( ( ( ! `
 N )  +  1 )  /  M
)  e.  ZZ )
8 infpnlem.1 . . . . . . . . . . 11  |-  K  =  ( ( ! `  N )  +  1 )
98oveq1i 5868 . . . . . . . . . 10  |-  ( K  /  M )  =  ( ( ( ! `
 N )  +  1 )  /  M
)
10 nnz 10045 . . . . . . . . . 10  |-  ( ( K  /  M )  e.  NN  ->  ( K  /  M )  e.  ZZ )
119, 10syl5eqelr 2368 . . . . . . . . 9  |-  ( ( K  /  M )  e.  NN  ->  (
( ( ! `  N )  +  1 )  /  M )  e.  ZZ )
127, 11nsyl 113 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  M  e.  NN )  /\  ( 1  < 
M  /\  M  <_  N ) )  ->  -.  ( K  /  M
)  e.  NN )
136, 12sylanl1 631 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  ( 1  < 
M  /\  M  <_  N ) )  ->  -.  ( K  /  M
)  e.  NN )
1413expr 598 . . . . . 6  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  1  <  M
)  ->  ( M  <_  N  ->  -.  ( K  /  M )  e.  NN ) )
155, 14sylbird 226 . . . . 5  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  1  <  M
)  ->  ( -.  N  <  M  ->  -.  ( K  /  M
)  e.  NN ) )
1615con4d 97 . . . 4  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  1  <  M
)  ->  ( ( K  /  M )  e.  NN  ->  N  <  M ) )
1716expimpd 586 . . 3  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( ( 1  < 
M  /\  ( K  /  M )  e.  NN )  ->  N  <  M
) )
1817adantrd 454 . 2  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( ( ( 1  <  M  /\  ( K  /  M )  e.  NN )  /\  A. j  e.  NN  (
( 1  <  j  /\  ( K  /  j
)  e.  NN )  ->  M  <_  j
) )  ->  N  <  M ) )
19 faccl 11298 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
206, 19syl 15 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  NN  ->  ( ! `  N )  e.  NN )
2120peano2nnd 9763 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN  ->  (
( ! `  N
)  +  1 )  e.  NN )
228, 21syl5eqel 2367 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN  ->  K  e.  NN )
2322nncnd 9762 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN  ->  K  e.  CC )
24 nndivtr 9787 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( j  e.  NN  /\  M  e.  NN  /\  K  e.  CC )  /\  ( ( M  / 
j )  e.  NN  /\  ( K  /  M
)  e.  NN ) )  ->  ( K  /  j )  e.  NN )
2524ex 423 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( j  e.  NN  /\  M  e.  NN  /\  K  e.  CC )  ->  (
( ( M  / 
j )  e.  NN  /\  ( K  /  M
)  e.  NN )  ->  ( K  / 
j )  e.  NN ) )
26253com13 1156 . . . . . . . . . . . . . . . . . . 19  |-  ( ( K  e.  CC  /\  M  e.  NN  /\  j  e.  NN )  ->  (
( ( M  / 
j )  e.  NN  /\  ( K  /  M
)  e.  NN )  ->  ( K  / 
j )  e.  NN ) )
27263expa 1151 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( K  e.  CC  /\  M  e.  NN )  /\  j  e.  NN )  ->  ( ( ( M  /  j )  e.  NN  /\  ( K  /  M )  e.  NN )  ->  ( K  /  j )  e.  NN ) )
2823, 27sylanl1 631 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  j  e.  NN )  ->  ( ( ( M  /  j )  e.  NN  /\  ( K  /  M )  e.  NN )  ->  ( K  /  j )  e.  NN ) )
2928adantrl 696 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  ( j  <_  M  /\  j  e.  NN ) )  ->  (
( ( M  / 
j )  e.  NN  /\  ( K  /  M
)  e.  NN )  ->  ( K  / 
j )  e.  NN ) )
30 nnre 9753 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( j  e.  NN  ->  j  e.  RR )
31 letri3 8907 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( j  e.  RR  /\  M  e.  RR )  ->  ( j  =  M  <-> 
( j  <_  M  /\  M  <_  j ) ) )
3230, 1, 31syl2an 463 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( j  e.  NN  /\  M  e.  NN )  ->  ( j  =  M  <-> 
( j  <_  M  /\  M  <_  j ) ) )
3332biimprd 214 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( j  e.  NN  /\  M  e.  NN )  ->  ( ( j  <_  M  /\  M  <_  j
)  ->  j  =  M ) )
3433exp4b 590 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  e.  NN  ->  ( M  e.  NN  ->  ( j  <_  M  ->  ( M  <_  j  ->  j  =  M ) ) ) )
3534com3l 75 . . . . . . . . . . . . . . . . . . . 20  |-  ( M  e.  NN  ->  (
j  <_  M  ->  ( j  e.  NN  ->  ( M  <_  j  ->  j  =  M ) ) ) )
3635imp32 422 . . . . . . . . . . . . . . . . . . 19  |-  ( ( M  e.  NN  /\  ( j  <_  M  /\  j  e.  NN ) )  ->  ( M  <_  j  ->  j  =  M ) )
3736adantll 694 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  ( j  <_  M  /\  j  e.  NN ) )  ->  ( M  <_  j  ->  j  =  M ) )
3837imim2d 48 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  ( j  <_  M  /\  j  e.  NN ) )  ->  (
( ( 1  < 
j  /\  ( K  /  j )  e.  NN )  ->  M  <_  j )  ->  (
( 1  <  j  /\  ( K  /  j
)  e.  NN )  ->  j  =  M ) ) )
3938com23 72 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  ( j  <_  M  /\  j  e.  NN ) )  ->  (
( 1  <  j  /\  ( K  /  j
)  e.  NN )  ->  ( ( ( 1  <  j  /\  ( K  /  j
)  e.  NN )  ->  M  <_  j
)  ->  j  =  M ) ) )
4029, 39sylan2d 468 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  ( j  <_  M  /\  j  e.  NN ) )  ->  (
( 1  <  j  /\  ( ( M  / 
j )  e.  NN  /\  ( K  /  M
)  e.  NN ) )  ->  ( (
( 1  <  j  /\  ( K  /  j
)  e.  NN )  ->  M  <_  j
)  ->  j  =  M ) ) )
4140exp4d 592 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  ( j  <_  M  /\  j  e.  NN ) )  ->  (
1  <  j  ->  ( ( M  /  j
)  e.  NN  ->  ( ( K  /  M
)  e.  NN  ->  ( ( ( 1  < 
j  /\  ( K  /  j )  e.  NN )  ->  M  <_  j )  ->  j  =  M ) ) ) ) )
4241com24 81 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  ( j  <_  M  /\  j  e.  NN ) )  ->  (
( K  /  M
)  e.  NN  ->  ( ( M  /  j
)  e.  NN  ->  ( 1  <  j  -> 
( ( ( 1  <  j  /\  ( K  /  j )  e.  NN )  ->  M  <_  j )  ->  j  =  M ) ) ) ) )
4342exp32 588 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( j  <_  M  ->  ( j  e.  NN  ->  ( ( K  /  M )  e.  NN  ->  ( ( M  / 
j )  e.  NN  ->  ( 1  <  j  ->  ( ( ( 1  <  j  /\  ( K  /  j )  e.  NN )  ->  M  <_  j )  ->  j  =  M ) ) ) ) ) ) )
4443com24 81 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( ( K  /  M )  e.  NN  ->  ( j  e.  NN  ->  ( j  <_  M  ->  ( ( M  / 
j )  e.  NN  ->  ( 1  <  j  ->  ( ( ( 1  <  j  /\  ( K  /  j )  e.  NN )  ->  M  <_  j )  ->  j  =  M ) ) ) ) ) ) )
4544imp31 421 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  M  e.  NN )  /\  ( K  /  M )  e.  NN )  /\  j  e.  NN )  ->  (
j  <_  M  ->  ( ( M  /  j
)  e.  NN  ->  ( 1  <  j  -> 
( ( ( 1  <  j  /\  ( K  /  j )  e.  NN )  ->  M  <_  j )  ->  j  =  M ) ) ) ) )
4645com14 82 . . . . . . . . 9  |-  ( 1  <  j  ->  (
j  <_  M  ->  ( ( M  /  j
)  e.  NN  ->  ( ( ( ( N  e.  NN  /\  M  e.  NN )  /\  ( K  /  M )  e.  NN )  /\  j  e.  NN )  ->  (
( ( 1  < 
j  /\  ( K  /  j )  e.  NN )  ->  M  <_  j )  ->  j  =  M ) ) ) ) )
47463imp 1145 . . . . . . . 8  |-  ( ( 1  <  j  /\  j  <_  M  /\  ( M  /  j )  e.  NN )  ->  (
( ( ( N  e.  NN  /\  M  e.  NN )  /\  ( K  /  M )  e.  NN )  /\  j  e.  NN )  ->  (
( ( 1  < 
j  /\  ( K  /  j )  e.  NN )  ->  M  <_  j )  ->  j  =  M ) ) )
4847com3l 75 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  M  e.  NN )  /\  ( K  /  M )  e.  NN )  /\  j  e.  NN )  ->  (
( ( 1  < 
j  /\  ( K  /  j )  e.  NN )  ->  M  <_  j )  ->  (
( 1  <  j  /\  j  <_  M  /\  ( M  /  j
)  e.  NN )  ->  j  =  M ) ) )
4948ralimdva 2621 . . . . . 6  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  ( K  /  M )  e.  NN )  ->  ( A. j  e.  NN  ( ( 1  <  j  /\  ( K  /  j )  e.  NN )  ->  M  <_  j )  ->  A. j  e.  NN  ( ( 1  <  j  /\  j  <_  M  /\  ( M  /  j )  e.  NN )  ->  j  =  M ) ) )
5049ex 423 . . . . 5  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( ( K  /  M )  e.  NN  ->  ( A. j  e.  NN  ( ( 1  <  j  /\  ( K  /  j )  e.  NN )  ->  M  <_  j )  ->  A. j  e.  NN  ( ( 1  <  j  /\  j  <_  M  /\  ( M  /  j )  e.  NN )  ->  j  =  M ) ) ) )
5150adantld 453 . . . 4  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( ( 1  < 
M  /\  ( K  /  M )  e.  NN )  ->  ( A. j  e.  NN  ( ( 1  <  j  /\  ( K  /  j )  e.  NN )  ->  M  <_  j )  ->  A. j  e.  NN  ( ( 1  <  j  /\  j  <_  M  /\  ( M  /  j )  e.  NN )  ->  j  =  M ) ) ) )
5251imp3a 420 . . 3  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( ( ( 1  <  M  /\  ( K  /  M )  e.  NN )  /\  A. j  e.  NN  (
( 1  <  j  /\  ( K  /  j
)  e.  NN )  ->  M  <_  j
) )  ->  A. j  e.  NN  ( ( 1  <  j  /\  j  <_  M  /\  ( M  /  j )  e.  NN )  ->  j  =  M ) ) )
53 prime 10092 . . . 4  |-  ( M  e.  NN  ->  ( A. j  e.  NN  ( ( M  / 
j )  e.  NN  ->  ( j  =  1  \/  j  =  M ) )  <->  A. j  e.  NN  ( ( 1  <  j  /\  j  <_  M  /\  ( M  /  j )  e.  NN )  ->  j  =  M ) ) )
5453adantl 452 . . 3  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( A. j  e.  NN  ( ( M  /  j )  e.  NN  ->  ( j  =  1  \/  j  =  M ) )  <->  A. j  e.  NN  ( ( 1  <  j  /\  j  <_  M  /\  ( M  /  j )  e.  NN )  ->  j  =  M ) ) )
5552, 54sylibrd 225 . 2  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( ( ( 1  <  M  /\  ( K  /  M )  e.  NN )  /\  A. j  e.  NN  (
( 1  <  j  /\  ( K  /  j
)  e.  NN )  ->  M  <_  j
) )  ->  A. j  e.  NN  ( ( M  /  j )  e.  NN  ->  ( j  =  1  \/  j  =  M ) ) ) )
5618, 55jcad 519 1  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( ( ( 1  <  M  /\  ( K  /  M )  e.  NN )  /\  A. j  e.  NN  (
( 1  <  j  /\  ( K  /  j
)  e.  NN )  ->  M  <_  j
) )  ->  ( N  <  M  /\  A. j  e.  NN  (
( M  /  j
)  e.  NN  ->  ( j  =  1  \/  j  =  M ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   1c1 8738    + caddc 8740    < clt 8867    <_ cle 8868    / cdiv 9423   NNcn 9746   NN0cn0 9965   ZZcz 10024   !cfa 11288
This theorem is referenced by:  infpnlem2  12958
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-seq 11047  df-fac 11289
  Copyright terms: Public domain W3C validator