MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infpwfien Structured version   Unicode version

Theorem infpwfien 7943
Description: Any infinite well-orderable set is equinumerous to its set of finite subsets. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
infpwfien  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( ~P A  i^i  Fin )  ~~  A )

Proof of Theorem infpwfien
Dummy variables  m  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infxpidm2 7898 . . . . . . 7  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( A  X.  A
)  ~~  A )
2 infn0 7369 . . . . . . . 8  |-  ( om  ~<_  A  ->  A  =/=  (/) )
32adantl 453 . . . . . . 7  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  ->  A  =/=  (/) )
4 fseqen 7908 . . . . . . 7  |-  ( ( ( A  X.  A
)  ~~  A  /\  A  =/=  (/) )  ->  U_ n  e.  om  ( A  ^m  n )  ~~  ( om  X.  A ) )
51, 3, 4syl2anc 643 . . . . . 6  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  ->  U_ n  e.  om  ( A  ^m  n
)  ~~  ( om  X.  A ) )
6 xpdom1g 7205 . . . . . . 7  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( om  X.  A
)  ~<_  ( A  X.  A ) )
7 domentr 7166 . . . . . . 7  |-  ( ( ( om  X.  A
)  ~<_  ( A  X.  A )  /\  ( A  X.  A )  ~~  A )  ->  ( om  X.  A )  ~<_  A )
86, 1, 7syl2anc 643 . . . . . 6  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( om  X.  A
)  ~<_  A )
9 endomtr 7165 . . . . . 6  |-  ( (
U_ n  e.  om  ( A  ^m  n
)  ~~  ( om  X.  A )  /\  ( om  X.  A )  ~<_  A )  ->  U_ n  e. 
om  ( A  ^m  n )  ~<_  A )
105, 8, 9syl2anc 643 . . . . 5  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  ->  U_ n  e.  om  ( A  ^m  n
)  ~<_  A )
11 numdom 7919 . . . . 5  |-  ( ( A  e.  dom  card  /\ 
U_ n  e.  om  ( A  ^m  n
)  ~<_  A )  ->  U_ n  e.  om  ( A  ^m  n
)  e.  dom  card )
1210, 11syldan 457 . . . 4  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  ->  U_ n  e.  om  ( A  ^m  n
)  e.  dom  card )
13 eliun 4097 . . . . . . . . 9  |-  ( x  e.  U_ n  e. 
om  ( A  ^m  n )  <->  E. n  e.  om  x  e.  ( A  ^m  n ) )
14 elmapi 7038 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( A  ^m  n )  ->  x : n --> A )
1514ad2antll 710 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( n  e.  om  /\  x  e.  ( A  ^m  n ) ) )  ->  x :
n --> A )
16 frn 5597 . . . . . . . . . . . . . 14  |-  ( x : n --> A  ->  ran  x  C_  A )
1715, 16syl 16 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( n  e.  om  /\  x  e.  ( A  ^m  n ) ) )  ->  ran  x  C_  A )
18 vex 2959 . . . . . . . . . . . . . . 15  |-  x  e. 
_V
1918rnex 5133 . . . . . . . . . . . . . 14  |-  ran  x  e.  _V
2019elpw 3805 . . . . . . . . . . . . 13  |-  ( ran  x  e.  ~P A  <->  ran  x  C_  A )
2117, 20sylibr 204 . . . . . . . . . . . 12  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( n  e.  om  /\  x  e.  ( A  ^m  n ) ) )  ->  ran  x  e. 
~P A )
22 simprl 733 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( n  e.  om  /\  x  e.  ( A  ^m  n ) ) )  ->  n  e.  om )
23 ssid 3367 . . . . . . . . . . . . . 14  |-  n  C_  n
24 ssnnfi 7328 . . . . . . . . . . . . . 14  |-  ( ( n  e.  om  /\  n  C_  n )  ->  n  e.  Fin )
2522, 23, 24sylancl 644 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( n  e.  om  /\  x  e.  ( A  ^m  n ) ) )  ->  n  e.  Fin )
26 ffn 5591 . . . . . . . . . . . . . . 15  |-  ( x : n --> A  ->  x  Fn  n )
27 dffn4 5659 . . . . . . . . . . . . . . 15  |-  ( x  Fn  n  <->  x :
n -onto-> ran  x )
2826, 27sylib 189 . . . . . . . . . . . . . 14  |-  ( x : n --> A  ->  x : n -onto-> ran  x
)
2915, 28syl 16 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( n  e.  om  /\  x  e.  ( A  ^m  n ) ) )  ->  x :
n -onto-> ran  x )
30 fofi 7392 . . . . . . . . . . . . 13  |-  ( ( n  e.  Fin  /\  x : n -onto-> ran  x
)  ->  ran  x  e. 
Fin )
3125, 29, 30syl2anc 643 . . . . . . . . . . . 12  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( n  e.  om  /\  x  e.  ( A  ^m  n ) ) )  ->  ran  x  e. 
Fin )
32 elin 3530 . . . . . . . . . . . 12  |-  ( ran  x  e.  ( ~P A  i^i  Fin )  <->  ( ran  x  e.  ~P A  /\  ran  x  e. 
Fin ) )
3321, 31, 32sylanbrc 646 . . . . . . . . . . 11  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( n  e.  om  /\  x  e.  ( A  ^m  n ) ) )  ->  ran  x  e.  ( ~P A  i^i  Fin ) )
3433expr 599 . . . . . . . . . 10  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  n  e.  om )  ->  ( x  e.  ( A  ^m  n )  ->  ran  x  e.  ( ~P A  i^i  Fin ) ) )
3534rexlimdva 2830 . . . . . . . . 9  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( E. n  e. 
om  x  e.  ( A  ^m  n )  ->  ran  x  e.  ( ~P A  i^i  Fin ) ) )
3613, 35syl5bi 209 . . . . . . . 8  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( x  e.  U_ n  e.  om  ( A  ^m  n )  ->  ran  x  e.  ( ~P A  i^i  Fin )
) )
3736imp 419 . . . . . . 7  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  x  e.  U_ n  e. 
om  ( A  ^m  n ) )  ->  ran  x  e.  ( ~P A  i^i  Fin )
)
38 eqid 2436 . . . . . . 7  |-  ( x  e.  U_ n  e. 
om  ( A  ^m  n )  |->  ran  x
)  =  ( x  e.  U_ n  e. 
om  ( A  ^m  n )  |->  ran  x
)
3937, 38fmptd 5893 . . . . . 6  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( x  e.  U_ n  e.  om  ( A  ^m  n )  |->  ran  x ) : U_ n  e.  om  ( A  ^m  n ) --> ( ~P A  i^i  Fin ) )
40 ffn 5591 . . . . . 6  |-  ( ( x  e.  U_ n  e.  om  ( A  ^m  n )  |->  ran  x
) : U_ n  e.  om  ( A  ^m  n ) --> ( ~P A  i^i  Fin )  ->  ( x  e.  U_ n  e.  om  ( A  ^m  n )  |->  ran  x )  Fn  U_ n  e.  om  ( A  ^m  n ) )
4139, 40syl 16 . . . . 5  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( x  e.  U_ n  e.  om  ( A  ^m  n )  |->  ran  x )  Fn  U_ n  e.  om  ( A  ^m  n ) )
42 frn 5597 . . . . . . 7  |-  ( ( x  e.  U_ n  e.  om  ( A  ^m  n )  |->  ran  x
) : U_ n  e.  om  ( A  ^m  n ) --> ( ~P A  i^i  Fin )  ->  ran  ( x  e. 
U_ n  e.  om  ( A  ^m  n
)  |->  ran  x )  C_  ( ~P A  i^i  Fin ) )
4339, 42syl 16 . . . . . 6  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  ->  ran  ( x  e.  U_ n  e.  om  ( A  ^m  n )  |->  ran  x )  C_  ( ~P A  i^i  Fin )
)
44 inss2 3562 . . . . . . . . . . . 12  |-  ( ~P A  i^i  Fin )  C_ 
Fin
45 simpr 448 . . . . . . . . . . . 12  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  y  e.  ( ~P A  i^i  Fin ) )
4644, 45sseldi 3346 . . . . . . . . . . 11  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  y  e.  Fin )
47 isfi 7131 . . . . . . . . . . 11  |-  ( y  e.  Fin  <->  E. m  e.  om  y  ~~  m
)
4846, 47sylib 189 . . . . . . . . . 10  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  E. m  e.  om  y  ~~  m )
49 ensym 7156 . . . . . . . . . . . . 13  |-  ( y 
~~  m  ->  m  ~~  y )
50 bren 7117 . . . . . . . . . . . . 13  |-  ( m 
~~  y  <->  E. x  x : m -1-1-onto-> y )
5149, 50sylib 189 . . . . . . . . . . . 12  |-  ( y 
~~  m  ->  E. x  x : m -1-1-onto-> y )
52 simprl 733 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
m  e.  om  /\  x : m -1-1-onto-> y ) )  ->  m  e.  om )
53 f1of 5674 . . . . . . . . . . . . . . . . . . . 20  |-  ( x : m -1-1-onto-> y  ->  x : m --> y )
5453ad2antll 710 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
m  e.  om  /\  x : m -1-1-onto-> y ) )  ->  x : m --> y )
55 inss1 3561 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ~P A  i^i  Fin )  C_ 
~P A
56 simplr 732 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
m  e.  om  /\  x : m -1-1-onto-> y ) )  -> 
y  e.  ( ~P A  i^i  Fin )
)
5755, 56sseldi 3346 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
m  e.  om  /\  x : m -1-1-onto-> y ) )  -> 
y  e.  ~P A
)
5857elpwid 3808 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
m  e.  om  /\  x : m -1-1-onto-> y ) )  -> 
y  C_  A )
59 fss 5599 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x : m --> y  /\  y  C_  A )  ->  x : m --> A )
6054, 58, 59syl2anc 643 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
m  e.  om  /\  x : m -1-1-onto-> y ) )  ->  x : m --> A )
61 simplll 735 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
m  e.  om  /\  x : m -1-1-onto-> y ) )  ->  A  e.  dom  card )
62 vex 2959 . . . . . . . . . . . . . . . . . . 19  |-  m  e. 
_V
63 elmapg 7031 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  dom  card  /\  m  e.  _V )  ->  ( x  e.  ( A  ^m  m )  <-> 
x : m --> A ) )
6461, 62, 63sylancl 644 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
m  e.  om  /\  x : m -1-1-onto-> y ) )  -> 
( x  e.  ( A  ^m  m )  <-> 
x : m --> A ) )
6560, 64mpbird 224 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
m  e.  om  /\  x : m -1-1-onto-> y ) )  ->  x  e.  ( A  ^m  m ) )
66 oveq2 6089 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  m  ->  ( A  ^m  n )  =  ( A  ^m  m
) )
6766eleq2d 2503 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  m  ->  (
x  e.  ( A  ^m  n )  <->  x  e.  ( A  ^m  m
) ) )
6867rspcev 3052 . . . . . . . . . . . . . . . . 17  |-  ( ( m  e.  om  /\  x  e.  ( A  ^m  m ) )  ->  E. n  e.  om  x  e.  ( A  ^m  n ) )
6952, 65, 68syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
m  e.  om  /\  x : m -1-1-onto-> y ) )  ->  E. n  e.  om  x  e.  ( A  ^m  n ) )
7069, 13sylibr 204 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
m  e.  om  /\  x : m -1-1-onto-> y ) )  ->  x  e.  U_ n  e. 
om  ( A  ^m  n ) )
71 f1ofo 5681 . . . . . . . . . . . . . . . . . 18  |-  ( x : m -1-1-onto-> y  ->  x : m -onto-> y )
7271ad2antll 710 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
m  e.  om  /\  x : m -1-1-onto-> y ) )  ->  x : m -onto-> y )
73 forn 5656 . . . . . . . . . . . . . . . . 17  |-  ( x : m -onto-> y  ->  ran  x  =  y )
7472, 73syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
m  e.  om  /\  x : m -1-1-onto-> y ) )  ->  ran  x  =  y )
7574eqcomd 2441 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
m  e.  om  /\  x : m -1-1-onto-> y ) )  -> 
y  =  ran  x
)
7670, 75jca 519 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
m  e.  om  /\  x : m -1-1-onto-> y ) )  -> 
( x  e.  U_ n  e.  om  ( A  ^m  n )  /\  y  =  ran  x ) )
7776expr 599 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  m  e.  om )  ->  (
x : m -1-1-onto-> y  -> 
( x  e.  U_ n  e.  om  ( A  ^m  n )  /\  y  =  ran  x ) ) )
7877eximdv 1632 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  m  e.  om )  ->  ( E. x  x :
m
-1-1-onto-> y  ->  E. x ( x  e.  U_ n  e. 
om  ( A  ^m  n )  /\  y  =  ran  x ) ) )
7951, 78syl5 30 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  m  e.  om )  ->  (
y  ~~  m  ->  E. x ( x  e. 
U_ n  e.  om  ( A  ^m  n
)  /\  y  =  ran  x ) ) )
8079rexlimdva 2830 . . . . . . . . . 10  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  ( E. m  e.  om  y  ~~  m  ->  E. x ( x  e.  U_ n  e. 
om  ( A  ^m  n )  /\  y  =  ran  x ) ) )
8148, 80mpd 15 . . . . . . . . 9  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  E. x ( x  e.  U_ n  e. 
om  ( A  ^m  n )  /\  y  =  ran  x ) )
8281ex 424 . . . . . . . 8  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( y  e.  ( ~P A  i^i  Fin )  ->  E. x ( x  e.  U_ n  e. 
om  ( A  ^m  n )  /\  y  =  ran  x ) ) )
83 vex 2959 . . . . . . . . . 10  |-  y  e. 
_V
8438elrnmpt 5117 . . . . . . . . . 10  |-  ( y  e.  _V  ->  (
y  e.  ran  (
x  e.  U_ n  e.  om  ( A  ^m  n )  |->  ran  x
)  <->  E. x  e.  U_  n  e.  om  ( A  ^m  n ) y  =  ran  x ) )
8583, 84ax-mp 8 . . . . . . . . 9  |-  ( y  e.  ran  ( x  e.  U_ n  e. 
om  ( A  ^m  n )  |->  ran  x
)  <->  E. x  e.  U_  n  e.  om  ( A  ^m  n ) y  =  ran  x )
86 df-rex 2711 . . . . . . . . 9  |-  ( E. x  e.  U_  n  e.  om  ( A  ^m  n ) y  =  ran  x  <->  E. x
( x  e.  U_ n  e.  om  ( A  ^m  n )  /\  y  =  ran  x ) )
8785, 86bitri 241 . . . . . . . 8  |-  ( y  e.  ran  ( x  e.  U_ n  e. 
om  ( A  ^m  n )  |->  ran  x
)  <->  E. x ( x  e.  U_ n  e. 
om  ( A  ^m  n )  /\  y  =  ran  x ) )
8882, 87syl6ibr 219 . . . . . . 7  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( y  e.  ( ~P A  i^i  Fin )  ->  y  e.  ran  ( x  e.  U_ n  e.  om  ( A  ^m  n )  |->  ran  x
) ) )
8988ssrdv 3354 . . . . . 6  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( ~P A  i^i  Fin )  C_  ran  ( x  e.  U_ n  e. 
om  ( A  ^m  n )  |->  ran  x
) )
9043, 89eqssd 3365 . . . . 5  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  ->  ran  ( x  e.  U_ n  e.  om  ( A  ^m  n )  |->  ran  x )  =  ( ~P A  i^i  Fin ) )
91 df-fo 5460 . . . . 5  |-  ( ( x  e.  U_ n  e.  om  ( A  ^m  n )  |->  ran  x
) : U_ n  e.  om  ( A  ^m  n ) -onto-> ( ~P A  i^i  Fin )  <->  ( ( x  e.  U_ n  e.  om  ( A  ^m  n )  |->  ran  x )  Fn  U_ n  e.  om  ( A  ^m  n )  /\  ran  ( x  e.  U_ n  e.  om  ( A  ^m  n )  |->  ran  x )  =  ( ~P A  i^i  Fin ) ) )
9241, 90, 91sylanbrc 646 . . . 4  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( x  e.  U_ n  e.  om  ( A  ^m  n )  |->  ran  x ) : U_ n  e.  om  ( A  ^m  n ) -onto-> ( ~P A  i^i  Fin ) )
93 fodomnum 7938 . . . 4  |-  ( U_ n  e.  om  ( A  ^m  n )  e. 
dom  card  ->  ( (
x  e.  U_ n  e.  om  ( A  ^m  n )  |->  ran  x
) : U_ n  e.  om  ( A  ^m  n ) -onto-> ( ~P A  i^i  Fin )  ->  ( ~P A  i^i  Fin )  ~<_  U_ n  e.  om  ( A  ^m  n
) ) )
9412, 92, 93sylc 58 . . 3  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( ~P A  i^i  Fin )  ~<_  U_ n  e.  om  ( A  ^m  n
) )
95 domtr 7160 . . 3  |-  ( ( ( ~P A  i^i  Fin )  ~<_  U_ n  e.  om  ( A  ^m  n
)  /\  U_ n  e. 
om  ( A  ^m  n )  ~<_  A )  ->  ( ~P A  i^i  Fin )  ~<_  A )
9694, 10, 95syl2anc 643 . 2  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( ~P A  i^i  Fin )  ~<_  A )
97 pwexg 4383 . . . . 5  |-  ( A  e.  dom  card  ->  ~P A  e.  _V )
9897adantr 452 . . . 4  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  ->  ~P A  e.  _V )
99 inex1g 4346 . . . 4  |-  ( ~P A  e.  _V  ->  ( ~P A  i^i  Fin )  e.  _V )
10098, 99syl 16 . . 3  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( ~P A  i^i  Fin )  e.  _V )
101 infpwfidom 7909 . . 3  |-  ( ( ~P A  i^i  Fin )  e.  _V  ->  A  ~<_  ( ~P A  i^i  Fin ) )
102100, 101syl 16 . 2  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  ->  A  ~<_  ( ~P A  i^i  Fin ) )
103 sbth 7227 . 2  |-  ( ( ( ~P A  i^i  Fin )  ~<_  A  /\  A  ~<_  ( ~P A  i^i  Fin ) )  ->  ( ~P A  i^i  Fin )  ~~  A )
10496, 102, 103syl2anc 643 1  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( ~P A  i^i  Fin )  ~~  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725    =/= wne 2599   E.wrex 2706   _Vcvv 2956    i^i cin 3319    C_ wss 3320   (/)c0 3628   ~Pcpw 3799   U_ciun 4093   class class class wbr 4212    e. cmpt 4266   omcom 4845    X. cxp 4876   dom cdm 4878   ran crn 4879    Fn wfn 5449   -->wf 5450   -onto->wfo 5452   -1-1-onto->wf1o 5453  (class class class)co 6081    ^m cmap 7018    ~~ cen 7106    ~<_ cdom 7107   Fincfn 7109   cardccrd 7822
This theorem is referenced by:  inffien  7944  isnumbasgrplem3  27247
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-seqom 6705  df-1o 6724  df-oadd 6728  df-er 6905  df-map 7020  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-oi 7479  df-card 7826  df-acn 7829
  Copyright terms: Public domain W3C validator